Publication:
Explainable classification methods for fish species detection using hydroacoustic data

Date

2021

Authors

Costa, Lucas Tubino Bonifacio
Borges, Eduardo N.
Emmendorfer, Leonardo R.
Weigert, Stefan Cruz

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

ES/1PE/TIN2016-77356-P
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta
Métricas Alternativas

Abstract

This work aims to evaluate explainable classification methods for the detection of fish species from hydroacoustic data acquired by echo sounders at a region near the coastline of south and southeastern Brazil. Decision trees and fuzzy rule-based methods were adopted. The fitted models were evaluated by quality measures based on the performance of the classifiers and also by an expert which analyzed the usefulness of the rules on describing the schools. The models learned by the algorithms performed well for the available data and were able to represent the documented behavior of the species considered in the studied region, according to the literature.

Description

Keywords

Explanability, Fish classification, Fuzzy rule-based classification systems, Hydroacoustics

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

L. T. Bonifácio, G. Lucca, G. P. Dimuro, E. N. Borges, L. R. Emmendorfer and S. C. Weigert, 'Explainable Classification Methods for Fish Species Detection Using Hydroacoustic Data,' 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494446.

item.page.rights

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.