Pereira Dimuro, Graçaliz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pereira Dimuro

First Name

Graçaliz

person.page.departamento

Automática y Computación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 52
  • PublicationOpen Access
    Funções de agregação baseadas em integral de Choquet aplicadas em redimensionalização de imagens
    (Universidade Passo Fundo, 2019) Bueno, Jéssica C. S.; Dias, Camila A.; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Botelho, Silvia S. C.; Mattos, Viviane L. D. de; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    The increasing data volume, coupled with the high complexity of these data, has generated the need to develop increasingly efficient knowledge extraction techniques, both in computational cost and precision. Most of the problems that are addressed by these techniques have complex information to be identified. For this, machine learning methods are used, where these methods use a variety of functions inside the different steps that are employed in their architectures. One of these consists in the use of aggregation functions to resize images. In this context, a study of aggregation functions based on the Choquet integral is presented, where the main feature of Choquet integral, in comparison with other aggregation functions, resides in the fact that it considers, through the fuzzy measure, the interaction between the elements to be aggregated. Thus, an evaluation study of the performance of the standard Choquet integral functions is presented (Choquet integral based on Copula in relation to the maximum and average functions) looking for results that may be better than the usual applied aggregation functions. The results of such comparisons are promising when evaluated through measures of image quality.
  • PublicationOpen Access
    Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface
    (IEEE, 2019) Ko, Li-Wei; Lu, Yi-Chen; Bustince Sola, Humberto; Chang, Yu-Cheng; Chang, Yang; Fernández Fernández, Francisco Javier; Wang, Yu-Kai; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Lin, Chin-Teng; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Brain–computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimulus. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain–computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain–computer interface commands.
  • PublicationOpen Access
    T-overlap t-migrative functions: a generalization of migrativity in t-overlap functions
    (Universidad Distrital Francisco José de Caldas (Colombia), 2020) Zapata, Hugo; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Este artículo introduce una generalización de funciones migrativas por extensión de la condición de la operación producto aplicada en las variables. Más específicamente, en lugar de exigir multiplicar la variable x por un número real alfa; en este trabajo se trabaja este número alfa con las variables de acuerdo a una t-norma. Se denomina a esta generalización función t-migrativa con respecto a tal tnorma. Luego se analizan las propiedades principales de funciones t-migrativas en funciones t-overlap y se introducen algunos métodos de construcción de este tipo de funciones.
  • PublicationOpen Access
    Neuro-inspired edge feature fusion using Choquet integrals
    (Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    It is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.
  • PublicationOpen Access
    General grouping functions
    (Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Some aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.
  • PublicationOpen Access
    Application of the Sugeno integral in fuzzy rule-based classification
    (Elsevier, 2024-09-27) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Urío Larrea, Asier; López Molina, Carlos; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fuzzy Rule-Based Classification System (FRBCS) is a well-known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations (e.g.: 𝐶𝑇 -integral, 𝐶𝐹 - Integral and 𝐶𝐶-integral) to enhance the performance of such systems. Such fuzzy integrals were applied to the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules when classifying new data. However, the Sugeno integral, another well-known aggregation operator, obtained good results in other applications, such as brain–computer interfaces. These facts led to the present study, in which we consider the Sugeno integral in classification problems. That is, the Sugeno integral is applied in the FRM of a widely used FRBCS, and its performance is analyzed over 33 different datasets from the literature, also considering different fuzzy measures. To show the efficiency of this new approach, the results obtained are also compared with previous studies that involved the application of different aggregation functions. Finally, we perform a statistical analysis of the application.
  • PublicationOpen Access
    On the normalization of interval data
    (MDPI, 2020) Santiago, Regivan; Bergamaschi, Flaulles; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    The impreciseness of numeric input data can be expressed by intervals. On the other hand, the normalization of numeric data is a usual process in many applications. How do we match the normalization with impreciseness on numeric data? A straightforward answer is that it is enough to apply a correct interval arithmetic, since the normalized exact value will be enclosed in the resulting 'normalized' interval. This paper shows that this approach is not enough since the resulting 'normalized' interval can be even wider than the input intervals. So, we propose a pair of axioms that must be satisfied by an interval arithmetic in order to be applied in the normalization of intervals. We show how some known interval arithmetics behave with respect to these axioms. The paper ends with a discussion about the current paradigm of interval computations.
  • PublicationOpen Access
    Fuzzy integrals for edge detection
    (Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincón Arango, Jaime Andrés; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.
  • PublicationOpen Access
    Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions
    (Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.
  • PublicationOpen Access
    d-Choquet integrals: Choquet integrals based on dissimilarities
    (Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.