Gómez Polo, Cristina

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gómez Polo

First Name

Cristina

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 40
  • PublicationOpen Access
    Antibacterial performance of Co-Zn ferrite nanoparticles under visible light irradiation
    (Wiley, 2024-11-20) Gubieda, Alicia G.; Abad Díaz de Cerio, Ana; García-Prieto, Ana; Fernández-Gubieda, María Luisa; Cervera Gabalda, Laura María; Ordoqui Huesa, Eduardo; Cornejo Ibergallartu, Alfonso; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    BACKGROUND: To address water scarcity and promote sustainable resource management, more efficient and cost-effective water treatment solutions are necessary. Particularly, pathogens in drinking water are a topic of growing concern. One promising technology is the use of photocatalytic nanoparticles activated by visible light as antibacterial agents. This study focuses on the characterization and antibacterial properties of Co-Zn ferrite nanocatalysts, tested against Escherichia coli. RESULTS: The CoxZn1¿xFe2O4 (x = 0, 0.1, 0.4 and 0.6) ferrites were synthesized by the co-precipitation method. Structural, morphological and optical analyses confirmed that these nanoparticles have a cubic spinel structure, with sizes of around 10 nm, and band gap energies suitable for visible light activation (1.4¿1.7 eV). The antibacterial efficacy of the nanoparticles against E. coli was tested and compared with their photocatalytic performance employing phenol as organic pollutant model (highest phenol degradation for x = 0.6). Specifically, the antibacterial capacity of these nanoparticles was evaluated by comparing the ability of bacteria to grow after being incubated with the nanoparticles under visible light and in the dark. It was found that nanoparticles with lower cobalt content (x = 0 and 0.1) significantly reduced bacterial culturability under visible light. Transmission Electron Microscopy analysis revealed that nanoparticles with cobalt content caused bacteria to secrete biofilm, potentially offering some protection against the nanoparticles. CONCLUSION: ZnFe2O4 nanoparticles show the highest antibacterial effect amongst those tested. This is attributed to the combined action of Zn2+ ion release and the photocatalytic effect under visible light. Furthermore, Zn might inhibit protective biofilm secretion, leading to higher antibacterial effects.
  • PublicationOpen Access
    Magnetic-field-assisted photocatalysis of N-TiO2 nanoparticles
    (IEEE, 2023-09-04) Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Nitrogen doped TiO2 nanoparticles were synthesized through solvothermal method employing Ti (IV) butoxide and HNO3 as precursors. Structural and optical characterizations confirm their nanometer nature (sizes around 10 nm) and the band-gap energy values in the UV range (3.2 eV). Nitrogen doping enhances the occurrence of optical Urbach tails extending towards the visible region. Visible photocatalytic performance (degradation of methyl orange) is correlated with maximum values in the magnetic susceptibility linked to a magnetic polarization of the anatase structure via defects (oxygen vacancies). The application of magnetic field provides a positive effect (acceleration in reaction kinetics) within the UV-Vis range.
  • PublicationOpen Access
    Magnetic carbon Fe3O4 nanocomposites synthesized via magnetic induction heating
    (Springer Nature, 2023) Cervera Gabalda, Laura María; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa
    Magnetic Induction Heating (MIH) of magnetite nanoparticles is employed as a novel synthesis procedure of carbon based magnetic nanocomposites. Magnetic nanoparticles (Fe3O4) and fructose (1:2 weight ratio) were mechanically mixed and submitted to a RF magnetic field (305 kHz). The heat generated by the nanoparticles leads to the decomposition of the sugar and to the formation of an amorphous carbon matrix. Two sets of nanoparticles, with mean diameter sizes of 20 and 100 nm, are comparatively analysed. Structural (X-ray diffraction, Raman spectroscopy, Transmission Electron Microscopy (TEM)), electrical and magnetic (resistivity, SQUID magnetometry) characterizations confirm the nanoparticle carbon coating through the MIH procedure. The percentage of the carbonaceous fraction is suitably increased controlling the magnetic heating capacity of the magnetic nanoparticles. The procedure enables the synthesis of multifunctional nanocomposites with optimized properties to be applied in different technological fields. Particularly, Cr (VI) removal from aqueous media is presented employing the carbon nanocomposite with 20 nm Fe3O4 nanoparticles.
  • PublicationOpen Access
    Tuning the photocatalytic performance through magnetization in Co-Zn ferrite nanoparticles
    (Elsevier, 2022) Cervera Gabalda, Laura María; Zielinska-Jurek, Anna; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this work, the link between the photocatalytic performance of Co-Zn ferrite nanoparticles and the net magnetic moment is analyzed. CoxZn1-xFe2O4 nanoparticles (0 ≤ x ≤ 1) were synthesized by co-precipitation method and different physicochemical techniques were employed to characterize the samples (X-ray diffraction, Transmission Electron Microscopy (TEM), BET surface area, Diffuse Reflectance Spectroscopy (DRS), Photoluminescence spectroscopy, Z-potential, SQUID magnetometry). Enhanced photocatalytic degradation (maximum degradation ratios of two emerging pollutants, phenol and toluene) are found in those nanoparticles (0.4 ≤ x ≤ 0.6) with optimum magnetic response (i.e. superparamagnetism at room temperature and high saturation magnetization). The magnetization of the nanoparticles turns out to be the determining factor in the optimization of the photocatalytic response, since there is no clear relationship with other physicochemical parameters (i.e. specific surface area, isoelectric point, band gap energy or photoluminescence). These results support the current field of research related to photocatalytic performance enhancement through magnetic field effects.
  • PublicationOpen Access
    Heatable magnetic nanocomposites with Fe3O4 nanocubes
    (Elsevier, 2022-09-27) Larumbe Abuin, Silvia; Lecumberri, Cristina; Monteserín, María; Fernández, Lorea; Medrano Fernández, Ángel María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The development of magnetic self-heating polymers is an area of great interest for many applications. The intrinsic magnetic properties of the magnetic fillers play a key role in the final heating capability of these nanocomposites. Thus, it has been already reported the improvement of the heating efficiency on Fe3O4 magnetic nanocubes with respect to spherical nanoparticles with the similar mean size1. This result is due to the contribution of the magnetic anisotropy giving rise to higher magnetic coercivity and as consequence, higher SAR (Specific Absorption Rate) values. In this work, well- defined Fe3O4 nanocubes were synthesized through thermal decomposition processes with a mean particle diameter around 70 nm (TEM) (Fig. 1). The SAR values were estimated through the measurement of the AC hysteresis loops, obtaining values of around 900 W/g for the dispersion of the nanocubes in water and values of 350 W/g for the nanocubes dispersed in agar (0.5% wt), with a frequency of 403 kHz and a field amplitude of 30kA/m . In this case, the decrease of the SAR values is due to the inmovilization of the particles in the medium and hence, the Brownian movement of the particles. The temperature increase was also characterized, where a clear enhancement of the heating properties was obtained for nanocubes comparing with spherical nanoparticles of similar mean diameter (Fig. 2). Finally, the heating capacity of the nanocomposites (30% weight of magnetic nanoparticles) was studied through the application of an external AC magnetic field with a Helmholtz coil (319 kHz, 400A, 200G approximately, induction equipment model EasyHeat Ambrell). The effect of the thickness of the polymeric discs on the final temperature achieved was studied (2 and 4 mm thickness and 30 mm diameter). Thus, temperatures of 100 °C or 250 °C were reached after 2 min for the nanocomposites with thicknesses of 2 and 4 mm respectively.
  • PublicationOpen Access
    Magnetic transition in nanocrystalline soft magnetic alloys analyzed via ac inductive techniques
    (American Physical Society, 2004) Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Vázquez, M.; Hernando, A.; Física; Fisika; Gobierno de Navarra / Nafarroako Gobernua
    The magnetic transition in a FeSiBCuNb nanocrystalline alloy, associated with the decoupling of ferromagnetic crystallites around the Curie point of the residual amorphous matrix, is analyzed in this work through the temperature dependence of the ac axial magnetic permeability and impedance of the samples. The temperature dependence of both complex magnitudes presents a maximum in the irreversible contribution at a certain transition temperature. While for low values of the exciting ac magnetic field the transition temperature lies below the Curie temperature of the amorphous phase, a shift above this Curie point is observed increasing the amplitude of the applied ac magnetic field. The detected field dependence is interpreted taking into account the ac nature of the inductive characterization techniques and the actual temperature dependence of the coercivity of the samples.
  • PublicationOpen Access
    A lock-in amplifier for magnetic nanoparticle detection using GMI sensors
    (IEEE, 2024-09-30) Algueta-Miguel, Jose M.; Beato López, Juan Jesús; López Martín, Antonio; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    A digital lock-in amplifier (LIA) for contactless magnetic nanoparticle (MNP) detection using giant magnetoimpedance (GMI) sensors is presented. The proposed approach is based on the simultaneous detection of the second harmonic amplitude and phase. A Xilinx Artix-7 field-programmable gate array (FPGA) has been employed for efficiently implementing the phase-sensitive detection (PSD) and the subsequent digital processing. The analog GMI sensor interface has been designed for minimizing the dependence of the excitation current on the GMI sensor impedance, also enhancing the rejection of the parasitic second-order distortion produced by the setup. A subsampling process of the analog outputs has been applied, both increasing the effective resolution of the analog-to-digital converter (ADC) and facilitating signal recovery. The proposed system improves the MNP detection capability reported in previous works using the second harmonic amplitude. Moreover, a characterization of the phase response, which had not been previously studied in the literature, is also provided.
  • PublicationOpen Access
    Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications
    (Elsevier, 2018) Gómez Polo, Cristina; Recarte Callado, Vicente; Cervera Gabalda, Laura María; Beato López, Juan Jesús; López García, Javier; Rodríguez Velamazán, José Alberto; Ugarte Martínez, María Dolores; Mendonça, E. C.; Duque, J. G. S.; Zientziak; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    A comparative study of the magnetic properties (magnetic moment, magnetocrystalline anisotropy) and hyperthermia response in Co-Zn spinel nanoparticles is presented. The CoxZn1-xFe2O4 nanoparticles (x = 1, 0.5, 0.4, 0.3, 0.2 and 0.1) were synthesized by co-precipitated method and the morphology and mean crystallite size (around 10 nm) of the nanoparticles were analysed by TEM Microscopy. Regarding the magnetic characterization (SQUID magnetometry), Co-Zn nanoparticles display at room temperature anhysteretic magnetization curves, characteristic of the superparamagnetic behavior. A decrease in the blocking temperature, T-B, with Zn content is experimentally detected that can be ascribed to the reduction in the mean nanoparticle size as x decreases. Furthermore, the reduction in the magnetocrystalline anisotropy with Zn inclusion is confirmed through the analysis of TB versus the mean volume of the nanoparticles and the law of approach to saturation. Maximum magnetization is achieved for x = 0.5 as a result of the cation distribution between octahedral and tetrahedral spinel sites, analysed by neutron diffraction studies. The occurrence of a canted spin arrangement (Yafet-Kittel angle) is introduced to properly fit the magnetic spinel structures. Finally, the heating capacity of these spinel ferrites is analyzed under ac magnetic field (magnetic hyperthermia). Maximum SAR (Specific Absorption Rate) values are achieved for x = 0.5 that should be correlated to the maximum magnetic moment of this composition.
  • PublicationOpen Access
    Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration
    (Elsevier, 2024-10-01) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Cruz Blas, Carlos Aristóteles de la; Tainta Ausejo, Santiago; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    Electromagnetic vibrational harvesters are low-cost devices featuring high-power densities and robust structures, often used for capturing the energy of environmental vibrations (civil infrastructures, transportation, human motion, etc.,). Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. However, the practical implementation of this type of vibrational harvester is currently limited due to the reduced generated power under low-frequency vibrations. In this work, an electromagnetic vibrational harvester is experimentally characterized and analyzed employing magnetic circuit analysis. The harvester consists of a ferromagnetic U-shaped cantilever, a NdFeB magnet and a ferrite magnet used as “magnetic tip mass” to enhance the magnetic flux changes under vibrations of frequency < 100 Hz. For this configuration, an experimental voltage of ∼ 1.2 V peak-to-peak (open circuit) was obtained at a resonant frequency of 77 Hz, enabling the subsequent electronic rectification stage. Additionally, Finite Element Method (FEM) is used to explore different design possibilities including the modeling of complex geometries, mechanical properties and non-linear magnetic materials, enabling the tuning of the resonance frequency from 51 to 77 Hz, keeping constant the induced voltage.
  • PublicationOpen Access
    Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe₂O₄ spinel ferrite
    (Elsevier, 2020) Ghasemi, R.; Echeverría Morrás, Jesús; Pérez de Landazábal Berganzo, José Ignacio; Beato López, Juan Jesús; Naseri, M.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    In this work, a comparative study of the effect of Cu on the structural, magnetic and magnetic induction heating response in CdFe2O4 spinel is presented. The ceramic nanoparticles (Cu1−xCdxFe2O4; 0 ≤ x ≤ 1) were synthesized by co-precipitation from Cu(II), Cd(II) and Fe(III) salts. The samples, characterized by X-ray diffractometry, display the characteristic spinel cubic structure (space group Fm3m) where CdO is detected as main secondary phase (≈ 16% weight for x = 1). A high degree of nanoparticle agglomeration is inferred from the Transmission Electron Microscopy (TEM) images, as a consequence of the employed synthesis procedure. Regarding the magnetic properties, superparamagnetic behavior at room temperature can be disregarded according to the low field magnetization response (ZFC-FC curves). For 0.4 ≤ x ≤ 0.8 ratios, the samples display maximum values in the magnetic moment that should be correlated to the cation distribution between the octahedral and tetrahedral sites. Maximum magnetization values lead to an enhancement in the magnetic induction heating response characterized by highest heating temperatures under the action of an ac magnetic field. In particular, maximum SAR values are estimated for x = 0.8 as a combined effect of high magnetic moment, low dc coercive field (high susceptibility). Although these Cu-Cd ferrite nanoparticles display moderate SAR values (around 0.7 W/g), the control of the maximum heating temperatures through the cation distribution (composition) provides promising properties to be used as nanosized heating elements (i.e. hyperthermia agents).