Gómez Polo, Cristina
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gómez Polo
First Name
Cristina
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
40 results
Search Results
Now showing 1 - 10 of 40
Publication Open Access Theoretical modeling and experimental verification of the scattering from a ferromagnetic microwire(IEEE, 2011) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gómez Polo, Cristina; Labrador Otamendi, Alberto; Pérez de Landazábal Berganzo, José Ignacio; Gonzalo García, Ramón; Física; Fisika; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis contribution presents a theoretical modelling of the scattering of ferromagnetic microwires in free-space and inside a rectangular waveguide, providing both an analytical solution and a physical interpretation of the problem. Special attention is devoted to the impact of the microwire radius and its magnetic properties. Theoretical results have been experimentally verified measuring the reflection, absorption and transmission coefficients of a ferromagnetic microwire inside a rectangular waveguide.Publication Open Access Antibacterial performance of Co-Zn ferrite nanoparticles under visible light irradiation(Wiley, 2024-11-20) Gubieda, Alicia G.; Abad Díaz de Cerio, Ana; García-Prieto, Ana; Fernández-Gubieda, María Luisa; Cervera Gabalda, Laura María; Ordoqui Huesa, Eduardo; Cornejo Ibergallartu, Alfonso; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2BACKGROUND: To address water scarcity and promote sustainable resource management, more efficient and cost-effective water treatment solutions are necessary. Particularly, pathogens in drinking water are a topic of growing concern. One promising technology is the use of photocatalytic nanoparticles activated by visible light as antibacterial agents. This study focuses on the characterization and antibacterial properties of Co-Zn ferrite nanocatalysts, tested against Escherichia coli. RESULTS: The CoxZn1¿xFe2O4 (x = 0, 0.1, 0.4 and 0.6) ferrites were synthesized by the co-precipitation method. Structural, morphological and optical analyses confirmed that these nanoparticles have a cubic spinel structure, with sizes of around 10 nm, and band gap energies suitable for visible light activation (1.4¿1.7 eV). The antibacterial efficacy of the nanoparticles against E. coli was tested and compared with their photocatalytic performance employing phenol as organic pollutant model (highest phenol degradation for x = 0.6). Specifically, the antibacterial capacity of these nanoparticles was evaluated by comparing the ability of bacteria to grow after being incubated with the nanoparticles under visible light and in the dark. It was found that nanoparticles with lower cobalt content (x = 0 and 0.1) significantly reduced bacterial culturability under visible light. Transmission Electron Microscopy analysis revealed that nanoparticles with cobalt content caused bacteria to secrete biofilm, potentially offering some protection against the nanoparticles. CONCLUSION: ZnFe2O4 nanoparticles show the highest antibacterial effect amongst those tested. This is attributed to the combined action of Zn2+ ion release and the photocatalytic effect under visible light. Furthermore, Zn might inhibit protective biofilm secretion, leading to higher antibacterial effects.Publication Open Access Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design(Elsevier, 2021) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Ugarte Martínez, María Dolores; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaSuperparamagnetic iron oxide nanoparticles (MNPs) have the potential to act as heat sources in magnetic hyperthermia. The key parameter for this application is the specific absorption rate (SAR), which must be as large as possible in order to optimize the hyperthermia treatment. We applied a Plackett-Burman fractional factorial design to investigate the effect of total iron concentration, ammonia concentration, reaction temperature, sonication time and percentage of ethanol in the aqueous media on the properties of iron oxide MNPs. Characterization techniques included total iron content, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, High Resolution Transmission Electron Microscopy, and Dynamic Magnetization. The reaction pathway in the coprecipitation reaction depended on the initial Fe concentration. Samples synthesized from 0.220 mol L−1 Fe yielded magnetite and metastable precipitates of iron oxyhydroxides. An initial solution made up of 0.110 mol L−1 total Fe and either 0.90 or 1.20 mol L−1 NH3(aq) led to the formation of magnetite nanoparticles. Sonication of the reaction media promoted a phase transformation of metastable oxyhydroxides to crystalline magnetite, the development of crystallinity, and the increase of specific absorption rate under dynamic magnetization.Publication Open Access Thrust actuator with passive restoration force for wide gap magnetic bearings(Elsevier, 2019) Royo Silvestre, Isaac; Beato López, Juan Jesús; Castellano Aldave, Jesús Carlos; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasActive thrust magnetic bearings provide an axial force to balance the moving parts of machines. However, most devices produce null or unbalancing passive forces. Furthermore, reported designs usually feature very small axial and radial gaps. This paper presents a thrust actuator for wide axial gaps that produces both passive and active restoring axial forces. It features a long biconical rotor and a stator housing a single winding and two permanent magnets. Simulations are done using finite-element-analysis (FEA) and compared to magnetic circuit analysis and experimental results from a prototype with a diameter of 48 mm and 20 mm axial displacement.Publication Open Access Insight into (electro)magnetic interactions within facet-engineered BaFe 12 O 19 /TiO 2 magnetic photocatalysts(American Chemical Society, 2023) Dudziak, Szymon; Gómez Polo, Cristina; Karczewski, Jakub; Nikiforow, Kostiantyn; Zielinska-Jurek, Anna; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2A series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent magnetic field within BaFe12O19. The morphology and crystal structure of the composites were confirmed by a combination of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses together with the detailed study of BaFe12O19 electronic and magnetic properties. The photocatalytic activity and magnetic field effect were studied in the reaction of phenol degradation for TiO2/BaFe12O19 and composites of BaFe12O19 covered with a SiO2 protective layer and TiO2. The observed differences in phenol degradation are associated with electron transfer and the contribution of the magnetic field. All obtained magnetic composite materials can be easily separated in an external magnetic field, with efficiencies exceeding 95%, and recycled without significant loss of photocatalytic activity. The highest activity was observed for the composite of BaFe12O19 with TiO2 exposing {1 0 1} facets. However, to prevent electron transfer within the composite structure, this photocatalyst material was additionally coated with a protective SiO2 layer. Furthermore, TiO2 exposing {1 0 0} facets exhibited significant synergy with the BaFe12O19 magnetic field, leading to 2 times higher photocatalytic activity when ferrite was magnetized before the process. The photoluminescence emission study suggests that for this particular combination, the built-in magnetic field of the ferrite suppressed the recombination of the photogenerated charge carriers. Ultimately, possible effects of complex electro/magnetic interactions within the magnetic photocatalyst are shown and discussed for the first time, including the anisotropic properties of both phases.Publication Open Access Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration(Elsevier, 2024-10-01) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Cruz Blas, Carlos Aristóteles de la; Tainta Ausejo, Santiago; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISCElectromagnetic vibrational harvesters are low-cost devices featuring high-power densities and robust structures, often used for capturing the energy of environmental vibrations (civil infrastructures, transportation, human motion, etc.,). Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. However, the practical implementation of this type of vibrational harvester is currently limited due to the reduced generated power under low-frequency vibrations. In this work, an electromagnetic vibrational harvester is experimentally characterized and analyzed employing magnetic circuit analysis. The harvester consists of a ferromagnetic U-shaped cantilever, a NdFeB magnet and a ferrite magnet used as “magnetic tip mass” to enhance the magnetic flux changes under vibrations of frequency < 100 Hz. For this configuration, an experimental voltage of ∼ 1.2 V peak-to-peak (open circuit) was obtained at a resonant frequency of 77 Hz, enabling the subsequent electronic rectification stage. Additionally, Finite Element Method (FEM) is used to explore different design possibilities including the modeling of complex geometries, mechanical properties and non-linear magnetic materials, enabling the tuning of the resonance frequency from 51 to 77 Hz, keeping constant the induced voltage.Publication Open Access Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe₂O₄ spinel ferrite(Elsevier, 2020) Ghasemi, R.; Echeverría Morrás, Jesús; Pérez de Landazábal Berganzo, José Ignacio; Beato López, Juan Jesús; Naseri, M.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasIn this work, a comparative study of the effect of Cu on the structural, magnetic and magnetic induction heating response in CdFe2O4 spinel is presented. The ceramic nanoparticles (Cu1−xCdxFe2O4; 0 ≤ x ≤ 1) were synthesized by co-precipitation from Cu(II), Cd(II) and Fe(III) salts. The samples, characterized by X-ray diffractometry, display the characteristic spinel cubic structure (space group Fm3m) where CdO is detected as main secondary phase (≈ 16% weight for x = 1). A high degree of nanoparticle agglomeration is inferred from the Transmission Electron Microscopy (TEM) images, as a consequence of the employed synthesis procedure. Regarding the magnetic properties, superparamagnetic behavior at room temperature can be disregarded according to the low field magnetization response (ZFC-FC curves). For 0.4 ≤ x ≤ 0.8 ratios, the samples display maximum values in the magnetic moment that should be correlated to the cation distribution between the octahedral and tetrahedral sites. Maximum magnetization values lead to an enhancement in the magnetic induction heating response characterized by highest heating temperatures under the action of an ac magnetic field. In particular, maximum SAR values are estimated for x = 0.8 as a combined effect of high magnetic moment, low dc coercive field (high susceptibility). Although these Cu-Cd ferrite nanoparticles display moderate SAR values (around 0.7 W/g), the control of the maximum heating temperatures through the cation distribution (composition) provides promising properties to be used as nanosized heating elements (i.e. hyperthermia agents).Publication Open Access Monitoring structural transformations in metamagnetic shape memory alloys by non-contact GMI technology(IOP Publishing, 2023) Beato López, Juan Jesús; La Roca, Paulo Matías; Algueta-Miguel, Jose M.; Garayo Urabayen, Eneko; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenDifferent applications based on metamagnetic shape memory alloy (MSMA) require monitoring the evolution of the martensitic transformation (MT) to optimize the actuation mechanism. To avoid interaction with the active material, a non-contact technique would be ideal. Nevertheless, non-contact detection involves complex methods like diffraction, optical analysis, or electromagnetic technology. The present work demonstrates that the MT can be monitored without interaction with the active material using a low-cost technology based on the Giant Magnetoimpedance (GMI) effect. The GMI sensor is based on a (CoFe)SiB soft magnetic wire submitted to an alternating current and whose second harmonic voltage variation allows to detect changes in the strength of the stray magnetic fields linked to the metamagnetic phase transition. The sensor has been tested using the MT of a NiMnInCo MSMA. A specific application for environmental temperature control using the non-contact GMI sensor is proposed.Publication Open Access Magnetic-field-assisted photocatalysis of N-TiO2 nanoparticles(IEEE, 2023-09-04) Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Nitrogen doped TiO2 nanoparticles were synthesized through solvothermal method employing Ti (IV) butoxide and HNO3 as precursors. Structural and optical characterizations confirm their nanometer nature (sizes around 10 nm) and the band-gap energy values in the UV range (3.2 eV). Nitrogen doping enhances the occurrence of optical Urbach tails extending towards the visible region. Visible photocatalytic performance (degradation of methyl orange) is correlated with maximum values in the magnetic susceptibility linked to a magnetic polarization of the anatase structure via defects (oxygen vacancies). The application of magnetic field provides a positive effect (acceleration in reaction kinetics) within the UV-Vis range.Publication Open Access Modulating photocatalytic activity of nitrogen doped TiO2 nanoparticles via magnetic field(Elsevier, 2024-07-30) Gómez Polo, Cristina; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe effect of the magnetic field on the photocatalytic activity of TiO2-based nanoparticles is analyzed using a magnetically-assisted photoreactor with permanent magnets to generate a controlled uniform magnetic field, B (¿82 mT). Nitrogen doped TiO2 nanoparticles (sizes around 10 nm) were synthesized through a solvothermal method employing Ti(IV) butoxide and HNO3 (x = 0, 0.5, 1, 1.5 and 2 mL) as precursors and their structural, optical and magnetic properties were analyzed. Specifically, nitrogen doping is confirmed through Hard X-ray Photoelectron Spectroscopy (HAXPES) in those samples synthesized with low HNO3 concentrations (x = 0.5, 1). The correlation between spin polarization (magnetic susceptibility) and visible photocatalytic activity (methyl orange as a model organic pollutant) is particularly analyzed. Surprisingly, opposite effects of the magnetic field on the photocatalytic performance are found in the visible range (above 400 nm) or under UV-Vis irradiation (decrease and increase in the photocatalytic activity, respectively, under magnetic field). The Langmuir-Hinshelwood model allows us to conclude that the strong decrease in adsorption under the magnetic field (around 42 % for x = 0.5) masks the increase in the kinetic constant (close to 58 % for x = 0.5) related mainly to the effect of Lorentz forces on the reduction of the electron-hole recombination.