Pablo Maiso, Lorena de

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pablo Maiso

First Name

Lorena de

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Nuevos avances para el desarrollo de vacunas frente a lentivirus
    (Interempresasmedia, 2020) Reina Arias, Ramsés; Nistal Villán, Estanislao; Pablo Maiso, Lorena de; Echeverría Garín, Irache; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    La infección de células ovinas por un virus murino no patogénico es capaz de interferir en la replicación de virus patogénicos como el Maedi Visna. El éxito en la defensa está condicionado por la capacidad inicial de respuesta con la que cuentan casi todas las células de los organismos vivos, participando en la inmunidad innata frente a cualquier infección.
  • PublicationOpen Access
    Multi-platform detection of small ruminant lentivirus antibodies and provirus as biomarkers of production losses
    (Frontiers Media, 2020) Echeverría Garín, Irache; Miguel, Ricardo de; Pablo Maiso, Lorena de; Glaría Ezquer, Idoia; Benito, Alfredo A.; Blas, Ignacio de; Andrés Cara, Damián de; Luján, Lluís; Reina Arias, Ramsés; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs, and central nervous system. Due to the lack of treatments and protective vaccination strategies, infection control is focused on the identification of infected animals through serological or molecular techniques. However, antigenic and genetic heterogeneity of SRLVs represent a clear drawback for diagnosis. Infected animals may present lower animal production parameters such as birth weight or milk production and quality, depending on productive systems considered and, likely, to the diagnostic method applied. In this study, four sheep flocks dedicated to dairy or meat production were evaluated using three different ELISA and two PCR strategies to classify animal population according to SRLV infection status. Productive parameters were recorded along one whole lactation or reproductive period and compared between positive and negative animals. SRLV was present in 19% of the total population, being unequally distributed in the different flocks. Less than half of the infected animals were detected by a single diagnostic method, highlighting the importance of combining different diagnostic techniques. Statistical analysis employing animal classification using all the diagnostic methods associated lambing size, lamb weight at birth, and daily weight gain with SRLV infection status in meat flocks. Milk production, somatic cell count, fat, and protein content in the milk were associated with SRLV infection in dairy flocks, to a greater extent in the flock showing higher seroprevalence. A multi-platform SRLV diagnostic strategy was useful for ensuring correct animal classification, thus validating downstream studies investigating production traits.
  • PublicationOpen Access
    Sendai virus, a strong inducer of anti-lentiviral state in ovine cells
    (MDPI, 2020) Pablo Maiso, Lorena de; Echeverría Garín, Irache; Rius-Rocabert, Sergio; Luján, Lluís; Garcin, Dominique; Andrés Cara, Damián de; Nistal Villán, Estanislao; Reina Arias, Ramsés; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Small ruminant lentiviruses (SRLVs) are widely spread in the ovine and caprine populations, causing an incurable disease aecting animal health and production. Vaccine development is hindered owing to the high genetic heterogeneity of lentiviruses and the selection of T-cell and antibody escape mutants, requiring antigen delivery optimization. Sendai virus (SeV) is a respiratory paramyxovirus in mice that has been recognized as a potent inducer of innate immune responses in several species, including mouse and human. The aim of this study was to stimulate an innate antiviral response in ovine cells and evaluate the potential inhibitory eect upon small ruminant lentivirus (SRLV) infections. Ovine alveolar macrophages (AMs), blood-derived macrophages (BDMs), and skin fibroblasts (OSFs) were stimulated through infection with SeV encoding green fluorescent protein (GFP). SeV eciently infected ovine cells, inducing an antiviral state in AM from SRLV naturally-infected animals, as well as in in vitro SRLV-infected BDM and OSF from non-infected animals. Supernatants from SeV-infected AM induced an antiviral state when transferred to fresh cells challenged with SRLV. Similar to SRLV, infectivity of an HIV-1-GFP lentiviral vector was also restricted in ovine cells infected with SeV. In myeloid cells, an M1-like proinflammatory polarization was observed together with an APOBEC3Z1 induction, among other lentiviral restriction factors. Our observations may boost new approximations in ameliorating the SRLV burden by stimulation of the innate immune response using SeV-based vaccine vectors.