Gracia Moisés, Ander

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gracia Moisés

First Name

Ander

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationEmbargo
    Optimization of optical spectroscopy classification algorithms for limited data scenarios in the food industry: tomato sauce samples case
    (Elsevier, 2025-01-01) Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Avedillo de la Casa, Amaia; Moreno Pérez, María; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertistate Publikoa
    This study addresses the problem of training deep learning models with limited datasets, a significant challenge in sectors like medical imaging and food quality analysis. To tackle this issue, generative adversarial networks (GANs) will be employed to augment the available data and improve model performance. An innovative approach is introduced here, integrating semi-supervised learning and generative modeling to maximize the use of small datasets in developing robust models. The method involves reversing the conventional distribution of training and testing data to focus on model evaluation and generalization from limited samples. Wasserstein GANs (WGANs) and Semi-Supervised GANs (SGANs), are utilized to supplement datasets with synthetic but realistic examples, enhancing the training process in scenarios of data scarcity. These techniques are applied in the context of visible reflectance spectroscopy to analyze tomato sauces, demonstrating the method's effectiveness in non-invasively assessing key quality parameters such as oil content, °Brix, and pH. The results show significant improvements in model performance metrics: for %Oil content, overall accuracy increased from 0.47 to 0.66; for °Bx, it rose from 0.65 to 0.71; and for pH measurement, accuracy improved from 0.43 to 0.62. These outcomes highlight the model's improved capability to generalize and maintain accuracy with limited data.
  • PublicationOpen Access
    Air bubble detection in water flow by means of ai-assisted infrared reflection system
    (IEEE, 2024-06-26) Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system’s design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system’s ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.
  • PublicationEmbargo
    Diseño y fabricación de una fuente y un detector mid-infrared acoplado a fibra óptica
    (2020) Gracia Moisés, Ander; Ruiz Zamarreño, Carlos; Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación; Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa
    En este documento se recogen los conocimientos y los cálculos necesarios para diseñar y producir una fuente de luz que sea capaz de emitir en el espectro infrarrojo medio. Se busca que la fuente sea lo más compacta posible y que se pueda fabricar de manera sencilla y a un coste reducido. Este tipo de fuentes de fuentes presentan cada vez mayor interés, sobre todo para realizar análisis médicos no invasivos. Por este motivo, desde la empresa Pyroistech, han decidido diseñar una fuente de luz que se pueda acoplar a fibra óptica, o que se pueda usar como una fuente colimada. Para conseguir los objetivos, se han realizado numerosos experimentos y pruebas, los cuales han permitido determinar y optimizar el diseño de la fuente prototipo, descubriendo en el proceso, cuáles son los principales problemas inherentes a esta tecnología que hay que resolver.
  • PublicationOpen Access
    Data augmentation techniques for machine learning applied to optical spectroscopy datasets in agrifood applications: a comprehensive review
    (MDPI, 2023) Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Machine learning (ML) and deep learning (DL) have achieved great success in different tasks. These include computer vision, image segmentation, natural language processing, predicting classification, evaluating time series, and predicting values based on a series of variables. As artificial intelligence progresses, new techniques are being applied to areas like optical spectroscopy and its uses in specific fields, such as the agrifood industry. The performance of ML and DL techniques generally improves with the amount of data available. However, it is not always possible to obtain all the necessary data for creating a robust dataset. In the particular case of agrifood applications, dataset collection is generally constrained to specific periods. Weather conditions can also reduce the possibility to cover the entire range of classifications with the consequent generation of imbalanced datasets. To address this issue, data augmentation (DA) techniques are employed to expand the dataset by adding slightly modified copies of existing data. This leads to a dataset that includes values from laboratory tests, as well as a collection of synthetic data based on the real data. This review work will present the application of DA techniques to optical spectroscopy datasets obtained from real agrifood industry applications. The reviewed methods will describe the use of simple DA techniques, such as duplicating samples with slight changes, as well as the utilization of more complex algorithms based on deep learning generative adversarial networks (GANs), and semi-supervised generative adversarial networks (SGANs).
  • PublicationEmbargo
    Estudio y fabricación de sistemas de análisis óptico de alta eficiencia y amplio espectro para aplicaciones agroalimentarias: inteligencia artificial y espectroscopia óptica aplicada en el sector agroalimentario
    (2024) Gracia Moisés, Ander; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua
    La industria agroalimentaria atraviesa una etapa de creciente énfasis en asegurar la calidad y seguridad de los productos alimenticios, así como de optimización de los procesos de producción y reducción o reutilización de los productos de desecho, haciendo necesaria una caracterización analítica exhaustiva de los alimentos, junto con la utilización de técnicas de detección en línea. Esta tesis busca contribuir al desarrollo de dispositivos que, combinando dos técnicas distintas como la espectroscopia óptica—especialmente en los rangos ultravioleta, visible e infrarrojo cercano—y técnicas de Machine Learning y Deep Learning, sean capaces de evaluar, validar y solucionar los desafíos planteados por la industria agroalimentaria. Se desarrollan dos líneas de investigación. La primera aborda problemas específicos propuestos por la industria agroalimentaria en distintos sectores y con diferentes materias primas, abarcando desde forrajes para la alimentación animal, la detección de perturbaciones en tuberías, hasta la identificación de posibles adulteraciones en el aceite de oliva virgen extra que puedan ocurrir en las plantas de embotellado. La segunda línea de investigación se centra en uno de los principales desafíos al trabajar con modelos de inteligencia artificial y datos espectroscópicos: la falta de datos. Se propone la utilización de modelos generativos adversarios (GANs) para aumentar de manera rápida, sencilla y económica los conjuntos de datos, mejorando así el rendimiento de los modelos desarrollados.
  • PublicationOpen Access
    Alfalfa quality detection by means of VIS-NIR optical fiber reflection spectroscopy
    (IEEE, 2022) Ruiz Zamarreño, Carlos; Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Imas González, José Javier; Castaño de Egüés, Lorena Yveth; Avedillo de la Casa, Amaia; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A first approach study for the classification of alfalfa (medicago sativa) quality has been performed by means of VIS-NIR optical fiber reflection spectroscopy. Reflection spectral data has been obtained from alfalfa samples comprising six different qualities. Obtained data has been classified and organized to feed supervised self-learning algorithms. Neural networks have been used in order to differentiate the quality level of the samples. Obtained results permit to validate the proposed approach with 72% of the samples properly classified. In addition, proposed solution was implemented in a low cost automated detection prototype suitable to be used by non-qualified operators. Obtained equipment consist of a first step towards its utilization in quality monitoring and classification of many other products in the agri-food field.