Villanueva Roldán, Pedro
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Villanueva Roldán
First Name
Pedro
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Automatic trajectory determination in automated robotic welding considering weld joint symmetry(MDPI, 2023) Curiel Braco, David; Veiga Suárez, Fernando; Suárez, Alfredo; Villanueva Roldán, Pedro; Aldalur, Eider; Ingeniería; IngeniaritzaThe field of inspection for welded structures is currently in a state of rapid transformation driven by a convergence of global technological, regulatory, and economic factors. This evolution is propelled by several key drivers, including the introduction of novel materials and welding processes, continuous advancements in inspection technologies, innovative approaches to weld acceptance code philosophy and certification procedures, growing demands for cost-effectiveness and production quality, and the imperative to extend the lifespan of aging structures. Foremost among the challenges faced by producers today is the imperative to meet customer demands, which entails addressing both their explicit and implicit needs. Furthermore, the integration of emerging materials and technologies necessitates the exploration of fresh solutions. These solutions aim to enhance inspection process efficiency while providing precise quantitative insights into defect identification and location. To this end, our project proposes cutting-edge technologies, some of which have yet to gain approval within the sector. Noteworthy among these innovations is the integration of vision systems into welding robots, among other solutions. This paper introduces a groundbreaking algorithm for tool path selection, leveraging profile scanning and the concept of joint symmetry. The application of symmetry principles for trajectory determination represents a pioneering approach within this expansive field.Publication Open Access Advanced welding automation: Intelligent systems for multipass welding in Butt Double V-Groove and Tee Double Bevel configurations(Elsevier, 2024-12-01) Curiel Braco, David; Suárez, Alfredo; Veiga Suárez, Fernando; Aldalur, Eider; Villanueva Roldán, Pedro; Ingeniería; IngeniaritzaThe paper addresses the imperative shift towards automation in welding processes, leveraging advanced technologies such as industrial robotic systems. Focusing on the reconstruction and classification of weld joints, it introduces a methodology for automatic trajectory determination. Utilizing a laser profilometer mounted on the robot, weld joints are reconstructed in three di- mensions, and spurious data is filtered out through signal processing. A classification algorithm, integrating signal processing and artificial intelligence, accurately categorizes joint profiles, in- cluding V-joints and single bevel T-joints. The proposed intelligent and adaptive system enhances welding automation by analyzing point cloud data from laser scanning to optimize welding tra- jectories. This study establishes a foundational framework for further refinement and broader application in welding automation. Key Points - Introduction of a methodology for automated trajectory determination in welding processes. - Utilization of laser scanning and signal processing for reconstruction and classification of weld joints. - Implementation of an intelligent and adaptive system to optimize welding trajectories