Fumanal Idocin, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fumanal Idocin
First Name
Javier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Combinations of affinity functions for different community detection algorithms in social networks(University of Hawaii Press, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Minárová, María; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSocial network analysis is a popular discipline among the social and behavioural sciences, in which the relationships between different social entities are modelled as a network. One of the most popular problems in social network analysis is finding communities in its network structure. Usually, a community in a social network is a functional sub-partition of the graph. However, as the definition of community is somewhat imprecise, many algorithms have been proposed to solve this task, each of them focusing on different social characteristics of the actors and the communities. In this work we propose to use novel combinations of affinity functions, which are designed to capture different social mechanics in the network interactions. We use them to extend already existing community detection algorithms in order to combine the capacity of the affinity functions to model different social interactions than those exploited by the original algorithms.Publication Open Access Mejoras a la capacidad de generalización de la inteligencia artificial(2023) Fumanal Idocin, Javier; Bustince Sola, Humberto; Cordón García, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLa fusión de información es un aspecto crucial del análisis moderno de datos y la toma de decisiones. Implica la integración de múltiples fuentes de información para obtener una com prensión más completa y precisa de un tema determinado. Este proceso es especialmente importante en campos como la informática, la ingeniería y las ciencias naturales, donde se generan grandes cantidades de datos procedentes de diversas fuentes que deben sintetizarse para tomar decisiones con conocimiento de causa. La fusión de información también es esencial en el diseño y la implantación de sistemas inteligentes, ya que permite integrar diversos sensores y fuentes de datos para hacer predicciones y recomendaciones más precisas. Desde un punto de vista matemático, una forma de estudiar este problema es a través de la idea de funciones de fusión, que toman como entrada un vector de números y devuelven uno solo, representativo de ellos. Un tipo relevante de funcion de fusión es la familia de funciones de agregación. Estas funciones mantienen dos condiciones de contorno y monotonicidad con respecto a las entradas, que inducen algunas propiedades deseables a la salida de la función. Sin embargo, la fusión de información en los sistemas aplicados comprende algo más que esta noción teórica. A medida que la heterogeneidad, la estructura y el volumen de los datos adquieren mayor relevancia, han surgido otros enfoques para abordar este problema. Por ejemplo, en una estructura de red, las distintas entradas se asocian entre sí según un conjunto preestablecido de relaciones; en las series temporales, los datos presentan dependencias temporales. Cuando se trata de datos no estructurados, como texto, audio e imagen, los enfoques de aprendizaje profundo han tenido mucho exito en la transformación de este tipo de datos en representaciones vectoriales de números reales utilizando series de transformaciones afines. A pesar de los esfuerzos previos en este campo, el problema de combinar eficazmente fuentes de información diversas y heterogéneas, sigue siendo un área de investigación abierta y activa. Esto se debe a los desafíos inherentes a la integracion de múltiples fuentes que pueden estar en diferentes formatos y pueden tener información contradictoria o incompleta. Por ejemplo, el modo en que la información medida se relaciona con otras fuentes de datos y la fiabilidad de esas medidas dependen en gran medida del procedimiento de medición. De hecho, los sistemas que fusionan la información de esas distintas fuentes presentarán también complejidades adicionales al tener en cuenta las particularidades de cada característica considerada. En esta tesis, proponemos un conjunto de funciones y algoritmos para tener en cuenta las posibles interacciones, heterogeneidades e incertidumbres cuando se trabaja con distintas fuentes de información. Lo hacemos mediante la teoría de agregaciones y el análisis de redes sociales, y nos centramos especialmente en aquellos casos en los que los enfoques de aprendizaje profundo no tienen tanto éxito. Aplicamos estos resultados a una amplia gama de problemas, incluyendo la clasificación de se ñales de interfaz cerebro-ordenador, la clasificación de datos tabulares estándar y la detección de anomalías.Publication Open Access Quantifying external information in social network analysis: an application to comparative mythology(IEEE, 2023) Fumanal Idocin, Javier; Cordón García, Óscar; Pereira Dimuro, Graçaliz; Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSocial network analysis is a popular tool to understand the relationships between interacting agents by studying the structural properties of their connections. However, this kind of analysis can miss some of the domain-specific knowledge available in the original information domain and its propagation through the associated network. In this work, we develop an extension of classical social network analysis to incorporate external information from the original source of the network. With this extension we propose a new centrality measure, the semantic value, and a new affinity function, the semantic affinity, that establishes fuzzy-like relationships between the different actors in the network. We also propose a new heuristic algorithm based on the shortest capacity problem to compute this new function. As an illustrative case study, we use the novel proposals to analyze and compare the gods and heroes from three different classical mythologies: 1) Greek; 2) Celtic; and 3) Nordic. We study the relationships of each individual mythology and those of the common structure that is formed when we fuse the three of them. We also compare our results with those obtained using other existing centrality measures and embedding approaches. In addition, we test the proposed measures on a classical social network, the Reuters terror news network, as well as in a Twitter network related to the COVID-19 pandemic. We found that the novel method obtains more meaningful comparisons and results than previous existing approaches in every case.