Fumanal Idocin, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fumanal Idocin

First Name

Javier

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 20
  • PublicationOpen Access
    Fuzzy clustering to encode contextual information in artistic image classification
    (Springer, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Bustince Sola, Humberto; Cordón, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Automatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.
  • PublicationOpen Access
    Mejoras a la capacidad de generalización de la inteligencia artificial
    (2023) Fumanal Idocin, Javier; Bustince Sola, Humberto; Cordón García, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    La fusión de información es un aspecto crucial del análisis moderno de datos y la toma de decisiones. Implica la integración de múltiples fuentes de información para obtener una com prensión más completa y precisa de un tema determinado. Este proceso es especialmente importante en campos como la informática, la ingeniería y las ciencias naturales, donde se generan grandes cantidades de datos procedentes de diversas fuentes que deben sintetizarse para tomar decisiones con conocimiento de causa. La fusión de información también es esencial en el diseño y la implantación de sistemas inteligentes, ya que permite integrar diversos sensores y fuentes de datos para hacer predicciones y recomendaciones más precisas. Desde un punto de vista matemático, una forma de estudiar este problema es a través de la idea de funciones de fusión, que toman como entrada un vector de números y devuelven uno solo, representativo de ellos. Un tipo relevante de funcion de fusión es la familia de funciones de agregación. Estas funciones mantienen dos condiciones de contorno y monotonicidad con respecto a las entradas, que inducen algunas propiedades deseables a la salida de la función. Sin embargo, la fusión de información en los sistemas aplicados comprende algo más que esta noción teórica. A medida que la heterogeneidad, la estructura y el volumen de los datos adquieren mayor relevancia, han surgido otros enfoques para abordar este problema. Por ejemplo, en una estructura de red, las distintas entradas se asocian entre sí según un conjunto preestablecido de relaciones; en las series temporales, los datos presentan dependencias temporales. Cuando se trata de datos no estructurados, como texto, audio e imagen, los enfoques de aprendizaje profundo han tenido mucho exito en la transformación de este tipo de datos en representaciones vectoriales de números reales utilizando series de transformaciones afines. A pesar de los esfuerzos previos en este campo, el problema de combinar eficazmente fuentes de información diversas y heterogéneas, sigue siendo un área de investigación abierta y activa. Esto se debe a los desafíos inherentes a la integracion de múltiples fuentes que pueden estar en diferentes formatos y pueden tener información contradictoria o incompleta. Por ejemplo, el modo en que la información medida se relaciona con otras fuentes de datos y la fiabilidad de esas medidas dependen en gran medida del procedimiento de medición. De hecho, los sistemas que fusionan la información de esas distintas fuentes presentarán también complejidades adicionales al tener en cuenta las particularidades de cada característica considerada. En esta tesis, proponemos un conjunto de funciones y algoritmos para tener en cuenta las posibles interacciones, heterogeneidades e incertidumbres cuando se trabaja con distintas fuentes de información. Lo hacemos mediante la teoría de agregaciones y el análisis de redes sociales, y nos centramos especialmente en aquellos casos en los que los enfoques de aprendizaje profundo no tienen tanto éxito. Aplicamos estos resultados a una amplia gama de problemas, incluyendo la clasificación de se ñales de interfaz cerebro-ordenador, la clasificación de datos tabulares estándar y la detección de anomalías.
  • PublicationOpen Access
    Interval-valued aggregation functions based on moderate deviations applied to motor-imagery-based brain computer interface
    (IEEE, 2021) Fumanal Idocin, Javier; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Sanz Delgado, José Antonio; Goyena Baroja, Harkaitz; Lin, Chin-Teng; Wang, Yu-Kai; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we develop moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data to construct interval-valued aggregation functions, and we apply these functions in two MotorImagery Brain Computer Interface (MI-BCI) systems to classify electroencephalography signals. To do so, we introduce the notion of interval-valued moderate deviation function and, in particular, we study those interval-valued moderate deviation functions which preserve the width of the input intervals. In order to apply them in a MI-BCI system, we first use fuzzy implication operators to measure the uncertainty linked to the output of each classifier in the ensemble of the system, and then we perform the decision making phase using the new interval-valued aggregation functions. We have tested the goodness of our proposal in two MI-BCI frameworks, obtaining better results than those obtained using other numerical aggregation and interval-valued OWA operators, and obtaining competitive results versus some non aggregation-based frameworks.
  • PublicationOpen Access
    Motor-imagery-based brain-computer interface using signal derivation and aggregation functions
    (IEEE, 2021) Fumanal Idocin, Javier; Wang, Yu-Kai; Lin, Chin-Teng; Fernández Fernández, Francisco Javier; Sanz Delgado, José Antonio; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Brain Computer Interface (BCI) technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery (MI). In BCI applications, the ElectroEncephaloGraphy (EEG) is a very popular measurement for brain dynamics because of its non-invasive nature. Although there is a high interest in the BCI topic, the performance of existing systems is still far from ideal, due to the difficulty of performing pattern recognition tasks in EEG signals. This difficulty lies in the selection of the correct EEG channels, the signal-tonoise ratio of these signals and how to discern the redundant information among them. BCI systems are composed of a wide range of components that perform signal pre-processing, feature extraction and decision making. In this paper, we define a new BCI Framework, named Enhanced Fusion Framework, where we propose three different ideas to improve the existing MI-based BCI frameworks. Firstly, we include an additional pre-processing step of the signal: a differentiation of the EEG signal that makes it time-invariant. Secondly, we add an additional frequency band as feature for the system: the Sensory Motor Rhythm band, and we show its effect on the performance of the system. Finally, we make a profound study of how to make the final decision in the system. We propose the usage of both up to six types of different classifiers and a wide range of aggregation functions (including classical aggregations, Choquet and Sugeno integrals and their extensions and overlap functions) to fuse the information given by the considered classifiers. We have tested this new system on a dataset of 20 volunteers performing motor imagery-based braincomputer interface experiments. On this dataset, the new system achieved a 88.80% of accuracy. We also propose an optimized version of our system that is able to obtain up to 90, 76%. Furthermore, we find that the pair Choquet/Sugeno integrals and overlap functions are the ones providing the best results.
  • PublicationOpen Access
    A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis
    (Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISC
    Intervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.
  • PublicationOpen Access
    Clusterig cosmológico: un enfoque del clustering gravitacional clásico inspirado en la estructura y dinámica del cosmos a gran escala
    (Universidad de Málaga, 2021) Castillo López, Aitor; Fumanal Idocin, Javier; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.
  • PublicationOpen Access
    The Krypteia ensemble: designing classifier ensembles using an ancient Spartan military tradition
    (Elsevier, 2023) Fumanal Idocin, Javier; Cordón, Óscar; Bustince Sola, Humberto; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we propose a new algorithm to train and optimize an ensemble of classifiers. We call this algorithm the Krypteia ensemble, based on an ancient Spartan tradition designed to convert their most promising individuals into future leaders of their society. We show how to adapt this ancient custom to optimize classifiers by generating different variations of the same task, each one offering different hardships according to distinct stochastic variables. This is thus applied to induce diversity in the set of individual weak learners. Then, we use a set of agents designed to select those subjects who excel in their assignments, and whose interaction minimizes excessive redundancies in the resulting population. We also study how different Krypteia ensembles can be stacked together, so that more complex classifiers can be built using the same procedure. Besides, we consider a wide range of different aggregation functions in the decision making phase to find the optimal performance for the different Krypteia ensemble variations tested. Finally, we study how different Krypteia ensembles perform for a wide range of classification datasets and we compare them with other state-of-the-art design techniques of classifier ensembles, obtaining favourable results to our proposal.
  • PublicationOpen Access
    On the stability of fuzzy classifiers to noise induction
    (IEEE, 2023-11-09) Fumanal Idocin, Javier; Bustince Sola, Humberto; Andreu-Pérez, Javier; Hagras, Hani; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Tabular data classification is one of the most important research problems in the artificial intelligence. One of the most important desired properties of the ideal classifier is that small changes in its input should not result in dramatic changes in its output. However, this might not be the case for many classifiers used in present day. Fuzzy classifiers should be stronger than their crisp counterparts, as they should be able to handle such changes using fuzzy sets and their membership functions. However, this hypothesis has not been empirically tested. Besides, the concept of 'small change' is somewhat imprecise and has not been quantified yet. In this work we propose to use small and progressively bigger changes in test samples to study how different crisp and fuzzy classifiers behave. We also study how to optimize classifiers to be more resistant to such kind of changes. Our results show that different fuzzy sets have different responses to this problem and have a smoother performance response compared to crisp classifiers. We also studied how to improve this and found that resistance to small changes can also result in a worse overall performance.
  • PublicationOpen Access
    Community detection and social network analysis based on the Italian wars of the 15th century
    (Elsevier, 2020) Fumanal Idocin, Javier; Alonso Betanzos, Amparo; Cordón, Óscar; Bustince Sola, Humberto; Minárová, María; Institute of Smart Cities - ISC
    In this contribution we study social network modelling by using human interaction as a basis. To do so, we propose a new set of functions, affinities, designed to capture the nature of the local interactions among each pair of actors in a network. By using these functions, we develop a new community detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent interaction in the network. We also discuss the effects of size and scale for communities regarding this case, as well as how we cope with the additional complexity present when big communities arise. Finally, we compare our community detection solution with other representative algorithms, finding favourable results.
  • PublicationOpen Access
    Sugeno integral generalization applied to improve adaptive image binarization
    (Elsevier, 2021) Bardozzo, Francesco; Osa Hernández, Borja de la; Horanská, Lubomíra; Fumanal Idocin, Javier; Priscoli, Mattia delli; Troiano, Luigi; Tagliaferri, Roberto; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, PI043-2019; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PC093-094 TFIPDL
    Classic adaptive binarization methodologies threshold pixels intensity with respect to adjacent pixels exploiting integral images. In turn, integral images are generally computed optimally by using the summed-area-table algorithm (SAT). This document presents a new adaptive binarization technique based on fuzzy integral images. Which, in turn, this technique is supported by an efficient design of a modified SAT for generalized Sugeno fuzzy integrals. We define this methodology as FLAT (Fuzzy Local Adaptive Thresholding). Experimental results show that the proposed methodology produced a better image quality thresholding than well-known global and local thresholding algorithms. We proposed new generalizations of different fuzzy integrals to improve existing results and reaching an accuracy ≈0.94 on a wide dataset. Moreover, due to high performances, these new generalized Sugeno fuzzy integrals created ad hoc for adaptive binarization, can be used as tools for grayscale processing and more complex real-time thresholding applications.