Fumanal Idocin, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fumanal Idocin
First Name
Javier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
20 results
Search Results
Now showing 1 - 10 of 20
Publication Open Access A rule-based approach for interpretable intensity-modulated radiation therapy treatment selection(IEEE, 2024-08-05) González García, Xabier; Fumanal Idocin, Javier; Nunez do Rio, Joan M.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaArtificial Intelligence (AI) methods are becoming essential in healthcare. In the context of Intensity-Modulated Radiation Therapy (IMRT), Knowledge-Based Planning (KBP) methodologies have enabled the modification of treatments in real-time to accommodate morphological changes in patients. KBP for IMRT is a data-driven approach that utilises real-time medical imaging to adjust the radiation dose for a patient as needed for the different stages of an illness. In this work we present an interpretable AI model that selects the best IMRT treatment alternatives and determines which is the best. We use an Adaptive Neuforuzzy Adaptive Inference System (ANFIS), which combines the potential of a neural network with the interpretability of a rule based system. We train the model in a supervised manner using the OpenKBP challenge data repository. For this purpose, we also developed a data augmentation method that is supported by Diffusion Probabilistic Models. This approach enables the generation of a wider spectrum of treatment qualities and aids regularisation. The primary advantage of this framework resides in its ability to offer explanations, which is essential in the deployment of medical procedures in real life. Moreover, it serves as a valuable means to test hypotheses concerning the quality of IMRT treatments. Our study reveals that the developed tool has substantial potential to establish itself as a reference in the realm of explainable IMRT treatment selection tools.Publication Open Access A fusion method for multi-valued data(Elsevier, 2021) Papčo, Martin; Rodríguez Martínez, Iosu; Fumanal Idocin, Javier; Altalhi, A. H.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper we propose an extension of the notion of deviation-based aggregation function tailored to aggregate multidimensional data. Our objective is both to improve the results obtained by other methods that try to select the best aggregation function for a particular set of data, such as penalty functions, and to reduce the temporal complexity required by such approaches. We discuss how this notion can be defined and present three illustrative examples of the applicability of our new proposal in areas where temporal constraints can be strict, such as image processing, deep learning and decision making, obtaining favourable results in the process.Publication Open Access Fuzzy clustering to encode contextual information in artistic image classification(Springer, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Bustince Sola, Humberto; Cordón, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAutomatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.Publication Open Access Análisis de redes sociales basado en las conquistas de César Borgia(Universidad de Málaga, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo presentamos el modelado de redes sociales y detección de comunidades utilizando como base un evento histórico real, las conquistas de César Borgia en el siglo XV. Para ello, proponemos un nuevo conjunto de funciones, llamadas funciones de afinidad, disenadas para capturar la 'naturaleza de las interacciones locales entre cada par de actores en una red. Utilizando estas funciones, desarrollamos un nuevo algoritmo de detección de comunidades, el Borgia Clustering, donde las comunidades surgen naturalmente de un proceso de simulación de interacción de múltiples agentes en la red. También discutimos los efectos del tamaño y la escala de cada comunidad, y como pueden ser tomadas en cuenta en el proceso de simulación. Finalmente, comparamos nuestra detección de comunidades con otros algoritmos representativos, encontrando resultados favorables a nuestra propuesta.Publication Open Access Combinations of affinity functions for different community detection algorithms in social networks(University of Hawaii Press, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Minárová, María; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSocial network analysis is a popular discipline among the social and behavioural sciences, in which the relationships between different social entities are modelled as a network. One of the most popular problems in social network analysis is finding communities in its network structure. Usually, a community in a social network is a functional sub-partition of the graph. However, as the definition of community is somewhat imprecise, many algorithms have been proposed to solve this task, each of them focusing on different social characteristics of the actors and the communities. In this work we propose to use novel combinations of affinity functions, which are designed to capture different social mechanics in the network interactions. We use them to extend already existing community detection algorithms in order to combine the capacity of the affinity functions to model different social interactions than those exploited by the original algorithms.Publication Open Access d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications(IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.Publication Open Access A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis(Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISCIntervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.Publication Open Access Clusterig cosmológico: un enfoque del clustering gravitacional clásico inspirado en la estructura y dinámica del cosmos a gran escala(Universidad de Málaga, 2021) Castillo López, Aitor; Fumanal Idocin, Javier; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.Publication Open Access Community detection and social network analysis based on the Italian wars of the 15th century(Elsevier, 2020) Fumanal Idocin, Javier; Alonso Betanzos, Amparo; Cordón, Óscar; Bustince Sola, Humberto; Minárová, María; Institute of Smart Cities - ISCIn this contribution we study social network modelling by using human interaction as a basis. To do so, we propose a new set of functions, affinities, designed to capture the nature of the local interactions among each pair of actors in a network. By using these functions, we develop a new community detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent interaction in the network. We also discuss the effects of size and scale for communities regarding this case, as well as how we cope with the additional complexity present when big communities arise. Finally, we compare our community detection solution with other representative algorithms, finding favourable results.Publication Open Access Interval-valued aggregation functions based on moderate deviations applied to motor-imagery-based brain computer interface(IEEE, 2021) Fumanal Idocin, Javier; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Sanz Delgado, José Antonio; Goyena Baroja, Harkaitz; Lin, Chin-Teng; Wang, Yu-Kai; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we develop moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data to construct interval-valued aggregation functions, and we apply these functions in two MotorImagery Brain Computer Interface (MI-BCI) systems to classify electroencephalography signals. To do so, we introduce the notion of interval-valued moderate deviation function and, in particular, we study those interval-valued moderate deviation functions which preserve the width of the input intervals. In order to apply them in a MI-BCI system, we first use fuzzy implication operators to measure the uncertainty linked to the output of each classifier in the ensemble of the system, and then we perform the decision making phase using the new interval-valued aggregation functions. We have tested the goodness of our proposal in two MI-BCI frameworks, obtaining better results than those obtained using other numerical aggregation and interval-valued OWA operators, and obtaining competitive results versus some non aggregation-based frameworks.