Fumanal Idocin, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fumanal Idocin

First Name

Javier

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    On the stability of fuzzy classifiers to noise induction
    (IEEE, 2023-11-09) Fumanal Idocin, Javier; Bustince Sola, Humberto; Andreu-Pérez, Javier; Hagras, Hani; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Tabular data classification is one of the most important research problems in the artificial intelligence. One of the most important desired properties of the ideal classifier is that small changes in its input should not result in dramatic changes in its output. However, this might not be the case for many classifiers used in present day. Fuzzy classifiers should be stronger than their crisp counterparts, as they should be able to handle such changes using fuzzy sets and their membership functions. However, this hypothesis has not been empirically tested. Besides, the concept of 'small change' is somewhat imprecise and has not been quantified yet. In this work we propose to use small and progressively bigger changes in test samples to study how different crisp and fuzzy classifiers behave. We also study how to optimize classifiers to be more resistant to such kind of changes. Our results show that different fuzzy sets have different responses to this problem and have a smoother performance response compared to crisp classifiers. We also studied how to improve this and found that resistance to small changes can also result in a worse overall performance.
  • PublicationOpen Access
    Motor-imagery-based brain-computer interface using signal derivation and aggregation functions
    (IEEE, 2021) Fumanal Idocin, Javier; Wang, Yu-Kai; Lin, Chin-Teng; Fernández Fernández, Francisco Javier; Sanz Delgado, José Antonio; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Brain Computer Interface (BCI) technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery (MI). In BCI applications, the ElectroEncephaloGraphy (EEG) is a very popular measurement for brain dynamics because of its non-invasive nature. Although there is a high interest in the BCI topic, the performance of existing systems is still far from ideal, due to the difficulty of performing pattern recognition tasks in EEG signals. This difficulty lies in the selection of the correct EEG channels, the signal-tonoise ratio of these signals and how to discern the redundant information among them. BCI systems are composed of a wide range of components that perform signal pre-processing, feature extraction and decision making. In this paper, we define a new BCI Framework, named Enhanced Fusion Framework, where we propose three different ideas to improve the existing MI-based BCI frameworks. Firstly, we include an additional pre-processing step of the signal: a differentiation of the EEG signal that makes it time-invariant. Secondly, we add an additional frequency band as feature for the system: the Sensory Motor Rhythm band, and we show its effect on the performance of the system. Finally, we make a profound study of how to make the final decision in the system. We propose the usage of both up to six types of different classifiers and a wide range of aggregation functions (including classical aggregations, Choquet and Sugeno integrals and their extensions and overlap functions) to fuse the information given by the considered classifiers. We have tested this new system on a dataset of 20 volunteers performing motor imagery-based braincomputer interface experiments. On this dataset, the new system achieved a 88.80% of accuracy. We also propose an optimized version of our system that is able to obtain up to 90, 76%. Furthermore, we find that the pair Choquet/Sugeno integrals and overlap functions are the ones providing the best results.
  • PublicationOpen Access
    Interval-valued aggregation functions based on moderate deviations applied to motor-imagery-based brain computer interface
    (IEEE, 2021) Fumanal Idocin, Javier; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Sanz Delgado, José Antonio; Goyena Baroja, Harkaitz; Lin, Chin-Teng; Wang, Yu-Kai; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we develop moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data to construct interval-valued aggregation functions, and we apply these functions in two MotorImagery Brain Computer Interface (MI-BCI) systems to classify electroencephalography signals. To do so, we introduce the notion of interval-valued moderate deviation function and, in particular, we study those interval-valued moderate deviation functions which preserve the width of the input intervals. In order to apply them in a MI-BCI system, we first use fuzzy implication operators to measure the uncertainty linked to the output of each classifier in the ensemble of the system, and then we perform the decision making phase using the new interval-valued aggregation functions. We have tested the goodness of our proposal in two MI-BCI frameworks, obtaining better results than those obtained using other numerical aggregation and interval-valued OWA operators, and obtaining competitive results versus some non aggregation-based frameworks.
  • PublicationOpen Access
    Supervised penalty-based aggregation applied to motor-imagery based brain-computer-interface
    (Elsevier, 2024) Fumanal Idocin, Javier; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Gómez Fernández, Marisol; Andreu-Pérez, Javier; Prasad, M.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    In this paper we propose a new version of penalty-based aggregation functions, the Multi Cost Aggregation choosing functions (MCAs), in which the function to minimize is constructed using a convex combination of two relaxed versions of restricted equivalence and dissimilarity functions instead of a penalty function. We additionally suggest two different alternatives to train a MCA in a supervised classification task in order to adapt the aggregation to each vector of inputs. We apply the proposed MCA in a Motor Imagery-based Brain- Computer Interface (MI-BCI) system to improve its decision making phase. We also evaluate the classical aggregation with our new aggregation procedure in two publicly available datasets. We obtain an accuracy of 82.31% for a left vs. right hand in the Clinical BCI challenge (CBCIC) dataset, and a performance of 62.43% for the four-class case in the BCI Competition IV 2a dataset compared to a 82.15% and 60.56% using the arithmetic mean. Finally, we have also tested the goodness of our proposal against other MI-BCI systems, obtaining better results than those using other decision making schemes and Deep Learning on the same datasets.