Person:
Soba Hidalgo, David

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Soba Hidalgo

First Name

David

person.page.departamento

ORCID

person.page.upna

811354

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Additive effects of heatwave and water stresses on soybean seed yield is caused by impaired carbon assimilation at pod formation but not at flowering
    (Elsevier, 2022) Soba Hidalgo, David; Arrese-Igor Sánchez, César; Aranjuelo Michelena, Iker; Institute for Multidisciplinary Research in Applied Biology - IMAB; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Heatwave (HW) combined with water stress (WS) are critical environmental factors negatively affecting crop development. This study aimed to quantify the individual and combined effects of HW and WS during early reproductive stages on leaf and nodule functioning and their relation with final soybean seed yield (SY). For this purpose, during flowering (R2) and pod formation (R4) soybean (Glycine max L. Merr.) plants were exposed to different temperature (ambient[25ºC] versus HW[40ºC]) and water availability (full capacity versus WS[20% field capacity]). HW, WS and their combined impact on yield depended on the phenological stage at which stress was applied being more affected at R4. For gas exchange, WS severely impaired photosynthetic machinery, especially when combined with HS. Impaired photoassimilate supply at flowering caused flower abortion and a significant reduction in final SY due to interacting stresses and WS. On the other hand, at pod formation (R4), decreased leaf performance caused additive effect on SY by decreasing pod setting and seed size with combined stresses. At the nodule level, WS (alone or in combination with HW) caused nodule impairment, which was reflected by lower leaf N. Such response was linked with a poor malate supply to bacteroids and feed-back inhibition caused by nitrogenous compounds accumulation. In summary, our study noted that soybean sensitivity to interacting heat and water stresses was highly conditioned by the phenological stage at which it occurs with, R4 stage being the critical moment. To our knowledge this is the first soybean work integrating combined stresses at early reproductive stages.
  • PublicationOpen Access
    Physiological, hormonal and metabolic responses of two alfalfa cultivars with contrasting responses to drought
    (MDPI, 2019) Soba Hidalgo, David; Zhou, Bangwei; Arrese-Igor Sánchez, César; Munné Bosch, Sergi; Aranjuelo Michelena, Iker; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Alfalfa (Medicago sativa L.) is frequently constrained by environmental conditions such as drought. Within this context, it is crucial to identify the physiological and metabolic traits conferring a better performance under stressful conditions. In the current study, two alfalfa cultivars (San Isidro and Zhong Mu) with different physiological strategies were selected and subjected to water limitation conditions. Together with the physiological analyses, we proceeded to characterize the isotopic, hormone, and metabolic profiles of the different plants. According to physiological and isotopic data, Zhong Mu has a water-saver strategy, reducing water lost by closing its stomata but fixing less carbon by photosynthesis, and therefore limiting its growth under water-stressed conditions. In contrast, San Isidro has enhanced root growth to replace the water lost through transpiration due to its more open stomata, thus maintaining its biomass. Zhong Mu nodules were less able to maintain nodule N2 fixing activity (matching plant nitrogen (N) demand). Our data suggest that this cultivar-specific performance is linked to Asn accumulation and its consequent N-feedback nitrogenase inhibition. Additionally, we observed a hormonal reorchestration in both cultivars under drought. Therefore, our results showed an intra-specific response to drought at physiological and metabolic levels in the two alfalfa cultivars studied.