Person: Soba Hidalgo, David
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Soba Hidalgo
First Name
David
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.upna
811354
Name
12 results
Search Results
Now showing 1 - 10 of 12
Publication Open Access An integrative, multidisciplinary approach to the study of the impact of climate change on legume agro-physiology and metabolism(2021) Soba Hidalgo, David; Aranjuelo Michelena, Iker; Munné Bosch, Sergi; Arrese-Igor Sánchez, César; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLas leguminosas son la segunda familia, tras los cereales, en importancia agrícola, cubriendo el 14% de la superficie cultivada. En el contexto actual y en un futuro cercano, la producción de leguminosas se ve amenazada por diversos estreses abióticos asociados con el cambio climático. Estos se espera que aumenten en número y severidad durante las próximas décadas. Debido al importante desafío para la seguridad alimentaria, es clave comprender cómo se pueden mejorar los futuros cultivos de leguminosas para resistir condiciones ambientales adversas. El objetivo general de esta tesis es obtener más conocimientos sobre los mecanismos implicados en la respuesta de las leguminosas a las condiciones ambientales ([CO2], sequía y temperatura) mediante la integración de medidas de biomasa, procesos fisiológicos y bioquímicos y niveles de metabolitos y otros compuestos.Publication Open Access Additive effects of heatwave and water stresses on soybean seed yield is caused by impaired carbon assimilation at pod formation but not at flowering(Elsevier, 2022) Soba Hidalgo, David; Arrese-Igor Sánchez, César; Aranjuelo Michelena, Iker; Institute for Multidisciplinary Research in Applied Biology - IMAB; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHeatwave (HW) combined with water stress (WS) are critical environmental factors negatively affecting crop development. This study aimed to quantify the individual and combined effects of HW and WS during early reproductive stages on leaf and nodule functioning and their relation with final soybean seed yield (SY). For this purpose, during flowering (R2) and pod formation (R4) soybean (Glycine max L. Merr.) plants were exposed to different temperature (ambient[25ºC] versus HW[40ºC]) and water availability (full capacity versus WS[20% field capacity]). HW, WS and their combined impact on yield depended on the phenological stage at which stress was applied being more affected at R4. For gas exchange, WS severely impaired photosynthetic machinery, especially when combined with HS. Impaired photoassimilate supply at flowering caused flower abortion and a significant reduction in final SY due to interacting stresses and WS. On the other hand, at pod formation (R4), decreased leaf performance caused additive effect on SY by decreasing pod setting and seed size with combined stresses. At the nodule level, WS (alone or in combination with HW) caused nodule impairment, which was reflected by lower leaf N. Such response was linked with a poor malate supply to bacteroids and feed-back inhibition caused by nitrogenous compounds accumulation. In summary, our study noted that soybean sensitivity to interacting heat and water stresses was highly conditioned by the phenological stage at which it occurs with, R4 stage being the critical moment. To our knowledge this is the first soybean work integrating combined stresses at early reproductive stages.Publication Open Access Physiological, hormonal and metabolic responses of two alfalfa cultivars with contrasting responses to drought(MDPI, 2019) Soba Hidalgo, David; Zhou, Bangwei; Arrese-Igor Sánchez, César; Munné Bosch, Sergi; Aranjuelo Michelena, Iker; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAlfalfa (Medicago sativa L.) is frequently constrained by environmental conditions such as drought. Within this context, it is crucial to identify the physiological and metabolic traits conferring a better performance under stressful conditions. In the current study, two alfalfa cultivars (San Isidro and Zhong Mu) with different physiological strategies were selected and subjected to water limitation conditions. Together with the physiological analyses, we proceeded to characterize the isotopic, hormone, and metabolic profiles of the different plants. According to physiological and isotopic data, Zhong Mu has a water-saver strategy, reducing water lost by closing its stomata but fixing less carbon by photosynthesis, and therefore limiting its growth under water-stressed conditions. In contrast, San Isidro has enhanced root growth to replace the water lost through transpiration due to its more open stomata, thus maintaining its biomass. Zhong Mu nodules were less able to maintain nodule N2 fixing activity (matching plant nitrogen (N) demand). Our data suggest that this cultivar-specific performance is linked to Asn accumulation and its consequent N-feedback nitrogenase inhibition. Additionally, we observed a hormonal reorchestration in both cultivars under drought. Therefore, our results showed an intra-specific response to drought at physiological and metabolic levels in the two alfalfa cultivars studied.Publication Open Access Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models(Springer, 2022) Buchaillot, María Luisa; Soba Hidalgo, David; Shu, Tianchu; Liu, Juan; Aranjuelo Michelena, Iker; Araus, José Luis; Runion, G. Brett; Prior, Stephen A.; Kefauver, Shawn C.; Sanz Sáez, Álvaro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaOne proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.Publication Open Access Effect of water stress during grain filling on yield, quality and physiological traits of Illpa and Rainbow quinoa (Chenopodium quinoa willd.) cultivars(MDPI, 2019) Gámez Guzmán, Angie Lorena; Soba Hidalgo, David; Zamarreño, Ángel M.; García Mina, José M.; Aranjuelo Michelena, Iker; Morales Iribas, Fermín; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako GobernuaThe total area under quinoa (Chenopodium quinoa Willd.) cultivation and the consumption of its grain have increased in recent years because of its nutritional properties and ability to grow under adverse conditions, such as drought. Climate change scenarios predict extended periods of drought and this has emphasized the need for new crops that are tolerant to these conditions. The main goal of this work was to evaluate crop yield and quality parameters and to characterize the physiology of two varieties of quinoa grown under water deficit in greenhouse conditions. Two varieties of quinoa from the Chilean coast (Rainbow) and altiplano (Illpa) were used, grown under full irrigation or two different levels of water deficit applied during the grain filling period. There were no marked differences in yield and quality parameters between treatments, but the root biomass was higher in plants grown under severe water deficit conditions compared to control. Photosynthesis, transpiration and stomatal conductance decreased with increased water stress in both cultivars, but the coastal variety showed higher water use efficiency and less discrimination of13 C under water deficit. This response was associated with greater root development and a better stomatal opening adjustment, especially in the case of Rainbow. The capacity of Rainbow to increase its osmoregulant content (compounds such as proline, glutamine, glutamate, K and Na) could enable a potential osmotic adjustment in this variety. Moreover, the lower stomatal opening and transpiration rates were also associated with higher leaf ABA concentration values detected in Rainbow. We found negative logarithmic relationships between stomatal conductance and leaf ABA concentration in both varieties, with significant R2 values of 0.50 and 0.22 in Rainbow and Illpa, respectively. These moderate-to-medium values suggest that, in addition to ABA signaling, other causes for stomatal closure in quinoa under drought such as hydraulic regulation may play a role. In conclusion, this work showed that two quinoa cultivars use different strategies in the face of water deficit stress, and these prevent decreases in grain yield and quality under drought conditions.Publication Open Access Anthesis as a key moment for nitrogen uptake efficiency (NUpE) and to predict grain yield using remote sensing data under different nitrogen levels in wheat(2015) Soba Hidalgo, David; Arrese-Igor Sánchez, César; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola TeknikoaSe crecieron veinticinco variedades de trigo (Triticum aestivum L.) bajo cuatro niveles diferentes de nitrógeno en la estación experimental Rothamsted Research, en el sur-este de Inglaterra, durante las temporadas 2013/14 y 2014 /15. Los dos objetivos del trabajo fueron investigar la variabilidad en la eficiencia en la toma de nitrógeno (NUpE) así como otros aspectos agronómicos y evaluar un amplio rango de índices de reflectancia espectral (SRI) como herramienta potencial para predecir la cosecha entre un amplio rango de genotipos de trigo y niveles de nitrógeno. los factores experimentales nitrógeno (N), genotipo (G) y año (Y) afectaron a las variables biomasa, concentración de nitrógeno en la planta, toma de nitrógeno por la planta, NUpE, nº de espigas m -2 , clorofila, altura e índice de área foliar (LAI). La cantidad de nitrógeno aplicada como fertilizante tuvo el mayor efecto en todas las variables. La variable año fue la segunda en importancia, en especial en NUpE y el número de espigas m -2 . El genotipo fue, de las tres, la variable con menos efecto. Solo la interacción G x Y fue estadísticamente significativa para todas las variable. La interacción G x N fue solo significativa en el caso de la clorofila y la altura. Incluso con esta escasa variabilidad genética se pudieron apreciar tendencias interesantes en NUpE y algunas variedades con alto NUpE en condiciones de bajo N fueron identificadas. El control remoto puede ser una herramienta útil para cuantificar el desarrollo y la cosecha del trigo. La reflectancia de la vegetación fue medida durante varios estados vegetativos y 21 SRI fueron calculados. Antesis fue el momento más apropiado para la determinación de la cosecha. Normalized difference red edge (NDRE), relacionado con el estado nitrogenado del cultivo, modified spectral ratio (MSR), relacionado con la concentración de clorofila, y photochemical reflectance index (PRI), relacionado con el uso eficiente de la radiación, fueron los mejores índices para predecir la futura cosecha. Un modelo usando estos tres índices fue hecho. La validación con los datos del segundo año mostró que este modelo pudo explicar el 96% de la variación observada en la cosecha de grano.Publication Open Access Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement(MDPI, 2020) Morales Iribas, Fermín; Ancín Rípodas, María; Fakhet, Dorra; González Torralba, Jon; Gámez Guzmán, Angie Lorena; Seminario Huárriz, Amaia; Soba Hidalgo, David; Ben Mariem, Sinda; Garriga, Miguel; Aranjuelo Michelena, Iker; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y AlimentaciónIncreased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.Publication Open Access Soybean inoculated with one bradyrhizobium strain isolated at elevated [CO2] show an impaired C and N metabolism when grown at ambient [CO2](Frontiers Media, 2021) Soba Hidalgo, David; Aranjuelo Michelena, Iker; Gakière, Bertrand; Gilard, Françoise; Pérez López, Usue; Mena Petite, Amaia; Muñoz Rueda, Alberto; Lacuesta, Maite; Sanz Sáez, Álvaro; Ciencias; ZientziakSoybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.Publication Open Access Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments(Wiley, 2019) Buezo Bravo, Javier; Sanz Sáez, Álvaro; Morán Juez, José Fernando; Soba Hidalgo, David; Aranjuelo Michelena, Iker; Esteban Terradillos, Raquel; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSoybean is a crop of agronomic importance that requires adequate watering during its growth to achieve high production. In this study, we determined physiological, photochemical and metabolic differences in five soybean varieties selected from the parental lines of a nested association mapping population during mild drought. These varieties have been described as high yielding (NE3001, HY1; LD01-5907, HY2) or drought tolerant (PI518751; HYD1; PI398881, HYD2). Nevertheless, there has been little research on the physiological traits that sustain their high productivity under water-limited conditions. The results indicate that high-yielding varieties under drought cope with the shortage of water by enhancing their photoprotective defences and invest in growth and productivity, linked to a higher intrinsic water use efficiency. This is the case of the variety N-3001 (HY1), with a tolerance strategy involving a faster transition into the reproductive stage to avoid the drought period. The present study highlights the role of the physiological and biochemical adjustments of various soybean varieties to cope with water-limited conditions. Moreover, the obtained results underscore the fact that the high phenotypic plasticity among soybean phenotypes should be exploited to compensate for the low genetic variability of this species when selecting plant productivity in constrained environments.Publication Open Access Foliar heavy metals and stable isotope (δ13C, δ15N) profiles as reliable urban pollution biomonitoring tools(Elsevier, 2021) Soba Hidalgo, David; Gámez Guzmán, Angie Lorena; Úriz, Naroa; Ruiz de Larrinaga, Lorena; González Murua, Carmen; Becerril, José María; Esteban Terradillos, Raquel; Serret, Dolors; Araus, José Luis; Aranjuelo Michelena, Iker; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraAnthropogenic heavy metal pollution is an important health issue in urban areas, and therefore rapid and inexpensive monitoring in time and space is desirable. This study aimed (i) to assess the suitability of Tilia cordata leaves as a valuable heavy metal bioindicator, including seasonal changes in concentrations and (ii) to evaluate the use of leaf carbon and nitrogen isotope composition (δ13C and δ15N) as novel indicators of urban heavy metal pollution. Leaves were collected from three different pollution intensity locations (Bilbao, Vitoria, and Muskiz) in the Basque Country (northern Spain). Analysis of leaf heavy metals related to traffic emissions and δ13C and δ15N determinations were carried out during July-October 2018. Leaf samples from Bilbao, the most populated and traffic-intense location, showed the highest concentration of heavy metals (mainly from polluted air). Additionally, the two urban areas, Bilbao and Vitoria, showed stronger correlation between these heavy metals, indicating a traffic-related source of emissions. The source of contamination (soil or air) in relation to elements and optimal sampling time is discussed herein. On the other hand, Pearson correlation analysis revealed significant trends between leaf δ13C and δ15N and the studied heavy metals, especially Pb, Cr and Cd, supporting the hypothesis of δ13C and δ15N as tools to distinguish locations according to their heavy metal pollution levels. To our knowledge, this is the first time that δ13C and δ15N have been used as monitoring tools in heavy metal pollution and consequently more research is still needed to calibrate this tool through extensive vegetation screening.