Ozcariz Celaya, Aritz
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ozcariz Celaya
First Name
Aritz
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film(Elsevier, 2019) Ozcariz Celaya, Aritz; Dominik, Magdalena; Smietana, Mateusz; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua 2016/PI044 NANOSEN; Gobierno de Navarra / Nafarroako Gobernua 0C023/024 BIOPTSENS; Gobierno de Navarra / Nafarroako Gobernua 64/20This work discusses an application of electrically conductive and optically transparent indium-gallium-zinc oxide (IGZO) thin films for fabrication of lossy mode resonance (LMR) based optical fiber refractometers. The films have been deposited on both 200 μm in diameter multimode fused silica fiber and D-shaped fiber structure. A sensitivity of 12,929 nm/RIU was obtained in the refractive index range between 1.39 and 1.42. In case of D-shaped fiber structure the effect of polishing depth on the LMR phenomenon has also been studied.Publication Open Access Materials for the fabrication of optical fiber refractometers based on lossy mode resonance(2020) Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako GobernuaLossy mode resonances (LMR) have been studied as an exceptional phenomenon for the development of optical fiber refractometers. These sensors rely on the interaction of the light propagating through the waveguide with a thin-film fabricated onto it. The properties of such film will determine the sensitivity of the LMR to surrounding refractive index variations. The nature of the film will also play an important role on the possibilities to develop sensing applications. This thesis analyzes the use of four different materials (tin oxide, aluminum-doped zinc oxide, indium-gallium-zinc oxide and copper oxide) for the development of LMR-based refractometers. First, the optimization on the fabrication process of tin oxide coatings is described, with the purpose of maximizing the sensitivity in a refractive index range close of the fused silica (1.44). Then, materials based on zinc oxide are presented for the first time for the fabrication of LMR-based sensors: aluminum-doped zinc oxide (AZO) and indium-gallium-zinc oxide (IGZO), leading to the development of several sensors working in the visible and near-infrared wavelength range. The last material analyzed in this work is copper oxide, which presents a refractive index considerably larger than the previously studied materials. Such feature is suggested to provide a greater sensitivity of the LMR to SRI variations, promising a better performance than the one achieved with different thin-films.Publication Open Access Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?(Nature Publishing Group, 2017) Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA tin dioxide thin layer has been studied in order to improve the sensitivity of lossy mode resonances (LMR) based sensors. The effects of the thin film thickness and the polarization of light in a SnO2 coated D-shaped single mode optical fiber have been evaluated. The optimization of such parameters in the fabrication of refractometers have led to an unprecedented sensitivity of over one million nanometers per refractive index unit (RIU), which means a sensitivity below 10^(−9) RIU with a pm resolution detector. This achievement is a milestone for the development of new high sensitivity devices and opens the door to new industrial applications, such as gear oil degradation, or biomedical devices where previous devices could not provide enough sensitivity.