Encío Martínez, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Encío Martínez
First Name
Ignacio
person.page.departamento
Ciencias de la Salud
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access Novel acylselenourea derivatives: dual molecules with anticancer and radical scavenging activity(MDPI, 2023) Astráin-Redín, Nora; Raza, Asif; Encío Martínez, Ignacio; Sharma, Arun K.; Plano, Daniel; Sanmartín, Carmen; Ciencias de la Salud; Osasun ZientziakOxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by H2O2. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds 1.I and 5.I showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.Publication Open Access A combination of apple vinegar drink with Bacillus coagulans ameliorates high fat diet-induced body weight gain, insulin resistance and hepatic steatosis(MDPI, 2020) Urtasun Alonso, Raquel; Araña Ciordia, Miriam; Pajares Villandiego, María Josefa; Oneca Agurruza, María; Torre Hernández, Paloma; Barajas Vélez, Miguel Ángel; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako GobernuaObesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1β, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.Publication Open Access Synthesis and pharmacological screening of several aroyl and heteroaroyl selenylacetic acid derivatives as cytotoxic and antiproliferative agents(MDPI, 2009) Sanmartín, Carmen; Plano, Daniel; Domínguez, Enrique; Font, María; Calvo, Alfonso; Prior, Celia; Encío Martínez, Ignacio; Palop, Juan Antonio; Ciencias de la Salud; Osasun ZientziakThe synthesis and cytotoxic activity of a series of twenty six aroyl and heteroaroyl selenylacetic acid derivatives of general formula Ar-CO-Se-CH(2)-COOH or Heterar-CO-Se-CH(2)-COOH are reported. The synthesis was carried out by reaction of acyl chlorides with sodium hydrogen selenide, prepared in situ, and this led to the formation of sodium aroylselenides that subsequently reacted with alpha-bromoacetic acid to produce the corresponding selenylacetic acid derivatives. All of the compounds were tested against a prostate cancer cell line (PC-3) and some of the more active compounds were assessed against a panel of four human cancer cell lines (CCRF-CEM, HTB-54, HT-29, MCF-7) and one mammary gland-derived non-malignant cell line (184B5). Some of the compounds exhibited remarkable cytotoxic and antiproliferative activities against MCF-7 and PC-3 that were higher than those of the reference compounds doxorubicin and etoposide, respectively. For example, in MCF-7 when Ar = phenyl, 3, 5-dimethoxyphenyl or benzyl the TGI values were 3.69, 4.18 and 6.19 mu M. On the other hand, in PC-3 these compounds showed values of 6.8, 4.0 and 2.9 mu M. Furthermore, benzoylselenylacetic acid did not provoke apoptosis nor did it perturb the cell cycle in MCF-7.Publication Open Access Novel N,N′-disubstituted acylselenoureas as potential antioxidant and cytotoxic agents(MDPI, 2020) Ruberte, Ana Carolina; Ramos Inza, Sandra; Aydillo, Carlos; Talavera, Irene; Encío Martínez, Ignacio; Plano, Daniel; Sanmartín, Carmen; Ciencias de la Salud; Osasun ZientziakSelenium compounds are pivotal in medicinal chemistry for their antitumoral and antioxidant properties. Forty seven acylselenoureas have been designed and synthesized following a fragment-based approach. Different scaffolds, including carbo-and hetero-cycles, along with mono-and bi-cyclic moieties, have been linked to the selenium containing skeleton. The dose-and time-dependent radical scavenging activity for all of the compounds were assessed using the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Some of them showed a greater radical scavenging capacity at low doses and shorter times than ascorbic acid. Therefore, four compounds were evaluated to test their protective effects against H2O2-induced oxidative stress. One derivative protected cells against H2O2-induced damage, increasing cell survival by up to 3.6-fold. Additionally, in vitro cytotoxic activity of all compounds was screened against several cancer cells. Eight compounds were selected to determine their half maximal inhibitory concentration (IC50) values towards breast and lung cancer cells, along with their selectivity indexes. The breast cancer cells turned out to be much more sensitive than the lung. Two compounds (5d and 10a) stood out with IC50 values between 4.2 µM and 8.0 µM towards MCF-7 and T47D cells, with selectivity indexes greater than 22.9. In addition, compound 10b exhibited dual antioxidant and cytotoxic activities. Although further evidence is needed, the acylselenourea scaffold could be a feasible frame to develop new dual agents.Publication Open Access Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma(BioMed Central, 2006) Lázcoz Ripoll, Paula; Muñoz, Jorge; Nistal, Manuel; Pestaña, Ángel; Encío Martínez, Ignacio; Sáez Castresana, Javier; Ciencias de la Salud; Osasun ZientziakBackground: Epigenetic alterations and loss of heterozygosity are mechanisms of tumor suppressor gene inactivation. A new carcinogenic pathway, targeting the RAS effectors has recently been documented. RASSF1A, on 3p21.3, and NORE1A, on 1q32.1, are among the most important, representative RAS effectors. Methods: We screened the 3p21 locus for the loss of heterozygosity and the hypermethylation status of RASSF1A, NORE1A and BLU ( the latter located at 3p21.3) in 41 neuroblastic tumors. The statistical relationship of these data was correlated with CASP8 hypermethylation. The expression levels of these genes, in cell lines, were analyzed by RT-PCR. Results: Loss of heterozygosity and microsatellite instability at 3p21 were detected in 14% of the analyzed tumors. Methylation was different for tumors and cell lines (tumors: 83% in RASSF1A, 3% in NORE1A, 8% in BLU and 60% in CASP8; cell lines: 100% in RASSF1A, 50% in NORE1A, 66% in BLU and 92% in CASP8). In cell lines, a correlation with lack of expression was evident for RASSF1A, but less clear for NORE1A, BLU and CASP8. We could only demonstrate a statistically significant association between hypermethylation of RASSF1A and hypermethylation of CASP8, while no association with MYCN amplification, 1p deletion, and/or aggressive histological pattern of the tumor was demonstrated. Conclusion: 1) LOH at 3p21 appears in a small percentage of neuroblastomas, indicating that a candidate tumor suppressor gene of neuroblastic tumors is not located in this region. 2) Promoter hypermethylation of RASSF1A and CASP8 occurs at a high frequency in neuroblastomas.Publication Open Access Novel selenadiazole derivatives as selective antitumor and radical scavenging agents(Elsevier, 2018) Ruberte, Ana Carolina; Plano, Daniel; Encío Martínez, Ignacio; Aydillo, Carlos; Sharma, Arun K.; Sanmartín, Carmen; Ciencias de la Salud; Osasun ZientziakTwenty-seven novel benzo[c][1,2,5]selenadiazole-5-carboxylic acid (BSCA) derivatives were designed and synthesized. Anti-proliferative activity of these structures was tested in vitro against a panel of five human cancer cell lines, including prostate (PC-3), colon (HT-29), leukemia (CCRF-CEM), lung (HTB-54) and breast (MCF-7). Four compounds (5, 6, 7 and 19) showed potent inhibitory activity with GI(50) values below 10 mu M in at least one of the cancer cell lines. The selectivity of these compounds was further examined in two non-malignant cell lines derived from breast (18465) and lung (BEAS-2B). Compound 7 exhibited promising anti-proliferative activity (GI(50) = 3.7 mu M) in MCF-7 cells, together with high selectivity index (SI> 27.1). The induction of cell death by compound 7 was independent of the apoptotic process and it did not affect cell cycle progression either. Likewise, radical scavenging properties of the new selenadiazole derivatives were confirmed by testing their ability to scavenge DPPH radicals. Four compounds (1, 2, 8 and 9) showed potent radical scavenging activity, compound 9 being the most effective. Overall, while compound 7 was identified as the most cell growth inhibitory agent and selectively toxic to cancer cells, compound 9 proved to be the most potent antioxidant among the selenadiazole derivatives synthesized. This series of compounds can serve as an excellent scaffold to achieve new and potent antioxidant compounds useful for several diseases, i.e. cancer, neurodegenerative, heart diseases and leishmaniasis, considering the high radical scavenging activity and low toxicity showed by most of the compounds.Publication Open Access Antidiabetic effects of Pediococcus acidilactici pA1c on HFD-induced mice(MDPI, 2022) Cabello Olmo, Miriam; Oneca Agurruza, María; Pajares Villandiego, María Josefa; Jiménez, Maddalen; Ayo, Josune; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2020-000086Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.Publication Open Access Human microbiota network: unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease(MDPI, 2021) Martínez, José E.; Vargas González, Augusto; Pérez Sánchez, Tania; Encío Martínez, Ignacio; Cabello Olmo, Miriam; Barajas Vélez, Miguel Ángel; Ciencias de la Salud; Osasun ZientziakThe human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.Publication Open Access A novel prognostic biomarker panel for early‐stage colon carcinoma(MDPI, 2021) Azcue Sanromán, Pablo; Guerrero Setas, David; Encío Martínez, Ignacio; Ibáñez Beroiz, Berta; Mercado Gutiérrez, María R.; Vera García, Ruth; Gómez Dorronsoro, María Luisa; Ciencias de la Salud; Osasun ZientziakMolecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early‐stage colon cancer (CC). The purpose of this study was to assess PD‐L1, GLUT‐1, e‐cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk‐panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD‐L1, GLUT‐1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low‐risk patients, medium‐risk patients have almost twice the risk of death (HR = 2.10 (0.99–4.46), p = 0.054), while high‐risk patients have almost four times the risk (HR = 3.79 (1.77–8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan–Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early‐stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.Publication Open Access Cutting down on lung cancer: Ecliptasaponin A is a novel therapeutic agent(AME, 2020) Rotinen Díaz, Mirja Sofia; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun ZientziakThis article is a comment of 'Han J, Lv W, Sheng H, et al. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells. Ann Transl Med 2019;7:539'.