Encío Martínez, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Encío Martínez
First Name
Ignacio
person.page.departamento
Ciencias de la Salud
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access In vitro assessment of the role of p53 on chemotherapy treatments in neuroblastoma cell lines(MDPI, 2021) Blanco Luquin, Idoia; Lázcoz Ripoll, Paula; Celay Leoz, Ion; Castresana, Javier S.; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaNeuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2 /p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etopo-side, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.Publication Open Access Novel selenadiazole derivatives as selective antitumor and radical scavenging agents(Elsevier, 2018) Ruberte, Ana Carolina; Plano, Daniel; Encío Martínez, Ignacio; Aydillo, Carlos; Sharma, Arun K.; Sanmartín, Carmen; Ciencias de la Salud; Osasun ZientziakTwenty-seven novel benzo[c][1,2,5]selenadiazole-5-carboxylic acid (BSCA) derivatives were designed and synthesized. Anti-proliferative activity of these structures was tested in vitro against a panel of five human cancer cell lines, including prostate (PC-3), colon (HT-29), leukemia (CCRF-CEM), lung (HTB-54) and breast (MCF-7). Four compounds (5, 6, 7 and 19) showed potent inhibitory activity with GI(50) values below 10 mu M in at least one of the cancer cell lines. The selectivity of these compounds was further examined in two non-malignant cell lines derived from breast (18465) and lung (BEAS-2B). Compound 7 exhibited promising anti-proliferative activity (GI(50) = 3.7 mu M) in MCF-7 cells, together with high selectivity index (SI> 27.1). The induction of cell death by compound 7 was independent of the apoptotic process and it did not affect cell cycle progression either. Likewise, radical scavenging properties of the new selenadiazole derivatives were confirmed by testing their ability to scavenge DPPH radicals. Four compounds (1, 2, 8 and 9) showed potent radical scavenging activity, compound 9 being the most effective. Overall, while compound 7 was identified as the most cell growth inhibitory agent and selectively toxic to cancer cells, compound 9 proved to be the most potent antioxidant among the selenadiazole derivatives synthesized. This series of compounds can serve as an excellent scaffold to achieve new and potent antioxidant compounds useful for several diseases, i.e. cancer, neurodegenerative, heart diseases and leishmaniasis, considering the high radical scavenging activity and low toxicity showed by most of the compounds.Publication Open Access PD-L1 as a prognostic factor in early-stage colon carcinoma within the immunohistochemical molecular subtype classification(MDPI, 2021) Azcue Sanromán, Pablo; Encío Martínez, Ignacio; Guerrero Setas, David; Suárez Alecha, Javier; Galbete Jiménez, Arkaitz; Mercado Gutiérrez, María R.; Vera García, Ruth; Gómez Dorronsoro, María Luisa; Ciencias de la Salud; Osasun ZientziakColorectal cancer (CRC) is a very heterogeneous disease. Efforts to characterize and search for biomarkers for these patients are currently ongoing in the hope of establishing a more targeted therapeutic approach. The role of PD-1 ligand (PD-L1) expression as a biomarker has not yet been fully elucidated. The Consensus Molecular Subtype classification has been delineated, but although already acknowledged in the most recent international guidelines, it has yet to be implemented in clinical practice. We investigate PD-L1 expression as a biomarker of prognosis in the early-stage setting and integrate it with the Consensus Molecular Subtype (CMS), in an effort to differentiate those patients with a worse prognosis who could potentially benefit from an early, more aggressive treatment. Our results suggest PD-L1 as an independent prognostic factor in early stage setting when assessed by immunohistochemistry. Additionally, PD-L1 expression appears to be a viable biomarker to differentiate patients in the CMS (CMS2/CMS3) who lack a clear prognosis.Publication Open Access Cutting down on lung cancer: Ecliptasaponin A is a novel therapeutic agent(AME, 2020) Rotinen Díaz, Mirja Sofia; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun ZientziakThis article is a comment of 'Han J, Lv W, Sheng H, et al. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells. Ann Transl Med 2019;7:539'.Publication Open Access ONECUT2 is a druggable driver of luminal to basal breast cancer plasticity(Sringer, 2024-05-31) Zamora Álvarez, Irene; Gutiérrez Núñez, Mirian; Pascual, Alex; Pajares Villandiego, María Josefa; Barajas Vélez, Miguel Ángel; Perez, Lillian M.; You, Sungyong; Knudsen, Beatrice S.; Freeman, Michael R.; Encío Martínez, Ignacio; Rotinen Díaz, Mirja Sofia; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaPurpose: tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC. Methods: we analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo. Results: OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors. Conclusions: the transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.Publication Open Access Transcriptional regulation of type 11 17β-hydroxysteroid dehydrogenase expression in prostate cancer cells(Elsevier, 2011) Rotinen Díaz, Mirja Sofia; Villar Bécares, Joaquín; Celay Leoz, Ion; Serrano Mendioroz, Irantzu; Notario, Vicente; Encío Martínez, Ignacio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaType 11 Hydroxysteroid (17-beta) dehydrogenase (HSD17B11) catalyzes the conversion of 5α-androstan-3α,17β-diol into androsterone suggesting that it may play an important role in androgen metabolism. We previously described that overexpression of C/EBPα or C/EBPβ induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region. Here, we study HSD17B11 transcriptional regulation in prostate cancer (PC) cells. Transfection experiments showed that the region −107/+18 is sufficient for promoter activity in PC cells. Mutagenesis analysis indicated that Sp1 and C/EBP binding sites found in this region are essential for promoter activity. Additional experiments demonstrated that ectopic expression of Sp1 and C/EBPα upregulated HSD17B11 expression only in PC cell lines. Through DAPA and ChIP assays, specific recruitment of Sp1 and C/EBPα to the HSD17B11 promoter was detected. These results show that HSD17B11 transcription in PC cells is regulated by Sp1 and C/EBPα.Publication Open Access Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: identification of a Se-indomethacin analog as a potential therapeutic for breast cancer(Elsevier, 2022) Ramos Inza, Sandra; Encío Martínez, Ignacio; Raza, Asif; Sharma, Arun K.; Sanmartín, Carmen; Plano, Daniel; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABA total of twenty-five novel carboxylic acid, methylester, methylamide or cyano nonsteroidal anti-inflammatory drug (NSAID) derivatives incorporating Se in the chemical form of selenoester were reported. Twenty Se-NSAID analogs exhibited an increase in cytotoxic potency compared with parent NSAID scaffolds (aspirin, salicylic acid, naproxen, indomethacin and ketoprofen). Top five analogs were selected to further study their cytotoxicity in a larger panel of cancer cells and were also submitted to the DTP program of the NCI's panel of 60 cancer cell lines. Compounds 4a and 4d stood out with IC50 values below 10 μM in several cancer cells along with a selectivity index higher than 5 in breast cancer cells. Remarkably, analog 4d was found to inhibit cell growth notably in two breast cancer cell lines by inducing apoptosis, and to be metabolized to release the parent NSAID along with the Se fragment. Taken together, our results show that Se-NSAID analog 4d could be a potential chemotherapeutic drug for breast cancer.Publication Open Access Thermal characterization, polymorphism, and stability evaluation of Se-NSAID derivatives with potent anticancer activity(Springer, 2024) Ramos Inza, Sandra; Almagro, Eneko; Font, María; Encío Martínez, Ignacio; Plano, Daniel; Sanmartín, Carmen; Sirera, Rafael; Lizarraga, Elena; Ciencias de la Salud; Osasun ZientziakStability, thermal characterization, and identification of possible polymorphism are relevant in the development of novel therapeutic drugs. In this context, thirty new nonsteroidal anti-inflammatory drug (NSAID) derivatives containing selenium (Se) as selenoesters or diacyl diselenides with demonstrated anticancer activity were thermally characterized in order to establish thermal stability criteria and detect possible polymorphic forms. Compounds were analyzed by a combination of thermogravimetry, differential scanning calorimetry, and X-ray diffraction techniques, and five different calorimetric behaviors were identified. Two compounds based on naproxen (I.3d and I.3e) and an indomethacin-containing derivative (II.2) presented two crystalline forms. The stability under acid, alkaline and oxidative conditions of selected polymorphs was also assessed using high-performance liquid chromatography. In addition, the cytotoxic activity of Se-NSAID crystalline polymorphs was studied in several cancer cell lines in vitro. Remarkably, no significant differences were found among the polymorphic forms tested, thus proving that these compounds are thermally qualified for further drug development.Publication Open Access Antidiabetic effects of Pediococcus acidilactici pA1c on HFD-induced mice(MDPI, 2022) Cabello Olmo, Miriam; Oneca Agurruza, María; Pajares Villandiego, María Josefa; Jiménez, Maddalen; Ayo, Josune; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2020-000086Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.Publication Open Access Human microbiota network: unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease(MDPI, 2021) Martínez, José E.; Vargas González, Augusto; Pérez Sánchez, Tania; Encío Martínez, Ignacio; Cabello Olmo, Miriam; Barajas Vélez, Miguel Ángel; Ciencias de la Salud; Osasun ZientziakThe human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.