Bujanda Cirauqui, Blanca

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bujanda Cirauqui

First Name

Blanca

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Convergent expansions of the confluent hypergeometric functions in terms of elementary functions
    (American Mathematical Society, 2018) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confluent hypergeometric function U(a, b; z) for b ∈ C, Ra > 0, and Rz > 0. We derive two convergent expansions of M(a, b; z); one of them in terms of incomplete gamma functions γ(a, z) and another one in terms of rational functions of ez and z. We also derive a convergent expansion of U(a, b; z) in terms of incomplete gamma functions γ(a, z) and Γ(a, z). The expansions of M(a, b; z) hold uniformly in either Rz ≥ 0 or Rz ≤ 0; the expansion of U(a, b; z) holds uniformly in Rz > 0. The accuracy of the approximations is illustrated by means of some numerical experiments.
  • PublicationOpen Access
    Convergent expansions of the incomplete gamma functions in terms of elementary functions
    (World Scientific Publishing, 2017) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds.
  • PublicationOpen Access
    Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge–Kutta–Nyström methods
    (Elsevier, 2016) Moreta, M. Jesús; Bujanda Cirauqui, Blanca; Jorge Ulecia, Juan Carlos; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We study some of the main features of Fractional Step Runge–Kutta–Nyström methods when they are used to integrate Initial–Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention on the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard when time dependent boundary conditions are considered. In this paper we present an efficient technique, very simple and computationally cheap, which allows us to avoid the order reduction; such technique consists in modifying the boundary conditions for the internal stages of the method.