Publication:
Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge–Kutta–Nyström methods

Date

2016

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//MTM2015-66837-P/ES/recolecta
MINECO//TEC2013-45585-C2-1-R/ES/recolecta
MINECO//MTM2014-52859-P/ES/recolecta
Métricas Alternativas

Abstract

We study some of the main features of Fractional Step Runge–Kutta–Nyström methods when they are used to integrate Initial–Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention on the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard when time dependent boundary conditions are considered. In this paper we present an efficient technique, very simple and computationally cheap, which allows us to avoid the order reduction; such technique consists in modifying the boundary conditions for the internal stages of the method.

Description

Keywords

Fractional Step Runge–Kutta–Nyström methods, Second-order partial differential equations, Order reduction, Stability, Consistency

Department

Ingeniería Matemática e Informática / Matematika eta Informatika Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.