Person: Torrez Herrera, Jonathan Josué
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Torrez Herrera
First Name
Jonathan Josué
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.upna
811673
Name
10 results
Search Results
Now showing 1 - 10 of 10
Publication Embargo Development of Ni/Lahexaaluminates from aluminum saline slags applied as catalysts in the dry reforming of methane(2021) Torrez Herrera, Jonathan Josué; Gil Bravo, Antonio; Korili, Sophia A.; Química Aplicada; Kimika AplikatuaThe general objective of this work is to study the synthesis methods, structural and morphological behavior of hexaaluminates and their performance as catalysts in the dry reforming reaction of methane from aluminum salt slags. Specific objectives: 1. Valorize the saline slag of aluminum and mitigate its polluting effect. 2. Obtaining an optimal method for the synthesis of hexaaluminates from salt slags. 3. Evaluation of the performance and applicability of catalysts in the dry reforming reaction. 4. Determination of the optimal operating parameters of the catalysts. 5. Determination of efficiency and comparison with catalysts synthesized with commercial precursors.Publication Open Access Structure and activity of nickel supported on hibonite-type La-hexaaluminates synthesized from aluminum saline slags for the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the procedures followed to obtain four hibonite-type La-hexaaluminates (La-HA) using aluminum saline slag waste as the aluminum source. Briefly, an acid-extracted aluminum solution (8.9 gAl/L) was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and 2-propanol/polyethylene glycol/methanol/1-hexanol/glucose depending on the hydrothermal conditions of the synthesis. The results showed the formation of pure-phase hexaaluminate at 1473 K in all cases, with differences in the textural properties between the materials. The solids obtained were used as supports for nickel catalysts (10 wt.%) for the dry reforming of methane (DRM) at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). An effect of the textural properties, dispersión of the metallic phase and nickel-support interaction on the performance of the catalyst was found. Our results also show a new application of a catalyst synthesized from an industrial waste such as aluminum saline slags.Publication Open Access A comparative study of the catalytic performance of nickel supported on a hibonite-type La-hexaaluminate synthesized from aluminum saline slags in the dry reforming of methane(Elsevier, 2022) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, a hibonite-type Ni/La-hexaaluminate (Ni/LHA) synthesized from an industrial waste is used and compared as catalyst in the dry reforming of methane (DRM) at 973 K. The structure, catalytic behavior, and stability during a run time of at least 50 h of three Nicatalysts obtained from two commercial supports and two preparation methods were used for comparison. An aluminum solution (9.40 g/L) obtained from an aluminum saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. The Ni/LHA catalyst (10 wt% NiO) was obtained by impregnation of the synthesized support, calcined previously at 1473 K for 2 h. The resulting solids were characterized by several techniques as: X-ray diffraction (XRD), N2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). In order to compare the catalytic behavior and properties of the Ni/LHA catalyst, three Ni catalysts obtained from two commercial supports (g-Al2O3 and SiO2) and two preparation methods (wet impregnation (I) and precipitation-deposition (PD)) were synthesized. Analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in Ni/LHA and NieI/ SiO2. The NiO species observed, with crystallite sizes between 9.7 and 40.4 nm, confirm the X-ray structural analyses. The Ni/LHA catalyst was found to be active and very stable in the DRM reaction after 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of 99% over almost all the time range evaluated. The behavior of this catalyst is comparable to that of NieI/Al2O3 and NiPD/SiO2. The results found indicating that the strong interaction of nickel with the support favors the stability of the catalysts in the DRM reaction.Publication Open Access Effect of the synthesis method on the morphology, textural properties and catalytic performance of La-hexaaluminates in the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the synthesis of nickel/lanthanum hexaaluminates (NiO/LHA), optimizing the LHA synthesis method, as well as their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM). The synthesis methods studied include co-precipitation, nitrate decomposition and freeze drying, using a La/Al molar ratio of 1:11 in all methods. Drying methods, namely oven drying (4 h at 353 K), vacuum drying (8 h at 353 K) + oven drying (2 h at 423 K) and heat treatment (12 h at 473 K) + oven drying (2 h at 373 K), were also optimized during selection of the final catalyst support. After calcination at 1473 K for 2 h, the presence of lanthanum aluminate (LaAlO3) and traces of LHA were found in all cases. Specific surface areas of 50, 32 and 30 m(2)/g were obtained for the samples AD1 (nitrate decomposition), FD1 (freeze drying), CP1 (co-precipitation). The nitrate decomposition method was selected and optimized to obtain the LHA structure at low temperature in the presence of Ni(II), using a La/Al/Ni molar ratio of 1/15/0.2. The results showed the formation of pure-phase hexaaluminate at 1473 K. The solids obtained were used as supports for nickel catalysts (10 wt%) for DRM at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The simulation of the TPR patterns of the catalysts allowed determining the type of metal support interaction and the activation energy of the system as well as the rest of the kinetic parameters. A cumulative mean activation energy of 100.7 kJ/mol was determined for the catalysts. The metallic morphologies, dispersion and distribution of NiO on the surface of the LHA support were analyzed considering a theoretical simulation of the reduction profiles, obtaining an average growth factor of 1.4, which indicates that the metallic phase is growing in one and two dimensions. The NiO/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after 20 h of reaction with an average selectivity H-2/CO upper than 0.90. The differences observed can be related to the textural properties developed during the optimized nitrate decomposition method. The characterization analysis by simulation, TPR, XRD, TEM, SEM allowed us to establish the effect of the textural properties, the metal interaction, the growth of the nickel grains and their distribution in the support on the catalytic performance in DRM. The better performance was obtained with the catalysts with higher porosity and greater support metal interaction, which allowed obtaining a better distribution of the metallic phase, thus generating less harmful carbonaceous species for the activity of the catalyst and therefore showing the best values of catalytic stability and conversion. Finally, three types of coke were identified from HR-TEM and EDS analysis: graphitic, filamentous and CNT, showing different effects on the catalytic behavior deactivation being the presence of graphitic more aggressive than the other two species.Publication Open Access Development of ceramic-MOF filters from aluminum saline slags for capturing CO2(Elsevier, 2023) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study describes the procedures followed to synthesize ceramic-MOF filters using aluminum saline slag wastes. Briefly, the raw aluminum saline slags were washed at 80 ◦C to significantly reduce the saline content and eliminate gases. The pretreated material was mixed with glucose (G/S ratios between 0.2 and 1.6) and acetone by stirring for 4 h. After this time, the resulting solid was dried at 60 ◦C and then at 190 ◦C. During the glucose caramelization step, PegMn400 was also added and the temperature increased to 1200 ◦C. The obtained solid was impregnated with precursor solutions to achieve a supported ZIF-8 MOF. The ceramic-MOF filters were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM), thereby confirming the presence of a structure that allows dispersion of the synthesized and supported ZIF-8. Finally, the performance of these ceramic-MOF filters as CO2 adsorbents was evaluated in the temperature range 50–300 ◦C, with isosteric heats of 19 kJ/mol being obtained using the Clausius-Clapeyron equation.Publication Open Access Progress in the synthesis and applications of hexaaluminate-based catalysts(Taylor & Francis, 2020) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600°C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis, and freeze-drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of CH4, partial oxidation, and dry reforming of CH4 to produce synthetic gas, and the decomposition of N2O. Finally, other applications, such as their function as a thermal barrier, are also addressed.Publication Open Access Evidence for the synthesis of La-hexaaluminate from aluminum-containing saline slag wastes: correction of structural defects and phase purification at low temperature(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Fuentes Ordóñez, Edwin Gustavo; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe synthesis of a lanthanum hexaaluminate from the aluminum extracted from a saline slag waste is presented for the first time. Briefly, a refluxing 2 M solution of HCl is used to extract the aluminum, giving 8.9 gAl/dm3 along with other metals in lower concentrations. This solution is used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate. The results showed the formation of pure phase hexaaluminate at 1473 K, as well as predominance of the hexaaluminate phase at temperatures of 1273 and 1373 K. These results also indicate that the pure hexaaluminate phase can be obtained at a much lower temperature than when commercial aluminum solutions are used improving the applications as catalyst and thermal barrier material. It was also found that the presence of other metals in solution allows the structural problems and purity of the La-hexaaluminate phase to be corrected when working with stoichiometric ratios.Publication Open Access Bimetallic (Pt-Ni) La-hexaaluminate catalysts obtained from aluminum saline slags for the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the synthesis of platinum-nickel/lanthanum hexaaluminates (PtNi/LHA) and their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM) at 973 K. An Al solution (9.40 g/L) obtained from an Al saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. After calcination at 1473 K for 2 h, the presence of LHA was confirmed. Wet impregnation of the synthesized support was used to obtain an initial Ni/LHA catalyst (10 wt% NiO) and the modified PtNi/LHA catalysts (0.2–1 wt% Pt). The support and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, temperature- programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR- TEM). The analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in all cases. The presence of Pt promoted NiO reducibility. The PtNi/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after reaction for 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of between 89% and 92% in almost all the time range evaluated. The presence of Pt improved the stability and catalytic performance of Ni/LHA thus improving resistance to coke formation.Publication Open Access Recent progress in the application of Ni-based catalysts for the dry reforming of methane(Taylor & Francis, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2Ni-based catalysts are highly efficient in methane-reforming processes. In the particular case of methane reforming in the presence of carbon dioxide, or dry reforming of methane (DRM), it is necessary to modify and control the initial properties of the catalyst to confer on it resistance to carbon deposition in particular, and to sintering of the Ni metal particles. In this regard, catalytic supports and promoters of different natures have been proposed. Likewise, the addition of small amounts of noble metals to avoid oxidation of the Ni active phase during the reforming reaction has been proposed. Catalyst preparation methods have also been identified as being of particular interest, since they can affect the structure of the Ni metal particles. In this review, the thermodynamic and kinetic aspects of the dry reforming of methane reaction are presented first. The most recent developments in synthetic methods (impregnation, sol-gel, co-precipitation, equilibrium deposition filtration, atomic layer deposition, non-thermal glow discharge plasma, multi-bubble sonoluminescence, 'core-shell' structure) aimed at maximizing the dispersion and thermal resistance of Ni particles are then discussed and compared. The catalytic supports used to promote dispersion of the active metallic phase, the oxygen-storage capacity, and the metal/support interaction are also described. The review then addresses the fact that both the nature of the support and the addition of promoters and other metallic phases that modify the surface properties can control the interaction between the metal and the support, the electronic density of the active phase, and the degree of Ni reduction. Finally, new lines of research focused on the DRM process to make the reaction conditions milder and favor the process at low temperatures are also summarized. © 2021 Taylor & Francis.Publication Open Access Analysis by temperature-programmed reduction of the catalytic system Ni-Mo-Pd/Al2O3(Elsevier, 2023) Pedroarena Apezteguía, Iván; Grande López, Lucía; Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAlumina-supported nickel catalysts are used to facilitate many reactions at various scales. However, the deactivation of these catalysts is an important problem that has prompted the search for solutions such as the addition of other metals that act as promoters. In this research, the interactions that form between the support and the metals have been studied, a fundamental property that directly affects the performance of the catalyst. With this idea, several Ni-Pd and Ni-Mo bimetallic and various Ni-Mo-Pd trimetallic samples have been prepared, and the reduction capacity of the oxide phases by temperatura-programmed reduction has been analyzed and studied. It has been found that in bimetallic catalysts, Pd favors the appearance of NiO species that are more easily reducible than Mo. In the same way, the data obtained from the trimetallic simples suggest that the impregnation order of Mo and Pd is not a determining factor in these catalysts. In addition, it has been found that the co-impregnation of Ni with Pd gives better results than the sequential impregnation of these metals. The results obtained have also shown that the order of nickel impregnation is decisive. In the case of Ni-Mo catalysts, by impregnating the molybdenum first, catalysts with better reducing properties can be obtained.