Person:
Reina Arias, Ramsés

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Reina Arias

First Name

Ramsés

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

0000-0003-1265-9139

person.page.upna

5614

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Small ruminant lentiviruses: genetic variability, tropism and diagnosis
    (MDPI, 2013) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Martínez, Humberto A.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
  • PublicationOpen Access
    Multi-platform detection of small ruminant lentivirus antibodies and provirus as biomarkers of production losses
    (Frontiers Media, 2020) Echeverría Garín, Irache; Miguel, Ricardo de; Pablo Maiso, Lorena de; Glaría Ezquer, Idoia; Benito, Alfredo A.; Blas, Ignacio de; Andrés Cara, Damián de; Luján, Lluís; Reina Arias, Ramsés; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs, and central nervous system. Due to the lack of treatments and protective vaccination strategies, infection control is focused on the identification of infected animals through serological or molecular techniques. However, antigenic and genetic heterogeneity of SRLVs represent a clear drawback for diagnosis. Infected animals may present lower animal production parameters such as birth weight or milk production and quality, depending on productive systems considered and, likely, to the diagnostic method applied. In this study, four sheep flocks dedicated to dairy or meat production were evaluated using three different ELISA and two PCR strategies to classify animal population according to SRLV infection status. Productive parameters were recorded along one whole lactation or reproductive period and compared between positive and negative animals. SRLV was present in 19% of the total population, being unequally distributed in the different flocks. Less than half of the infected animals were detected by a single diagnostic method, highlighting the importance of combining different diagnostic techniques. Statistical analysis employing animal classification using all the diagnostic methods associated lambing size, lamb weight at birth, and daily weight gain with SRLV infection status in meat flocks. Milk production, somatic cell count, fat, and protein content in the milk were associated with SRLV infection in dairy flocks, to a greater extent in the flock showing higher seroprevalence. A multi-platform SRLV diagnostic strategy was useful for ensuring correct animal classification, thus validating downstream studies investigating production traits.
  • PublicationOpen Access
    Mannose receptor may be involved in small ruminant lentivirus pathogenesis
    (BioMed Central, 2012) Crespo Otano, Helena; Jauregui, Paula; Glaría Ezquer, Idoia; Sanjosé, Leticia; Polledo, Laura; García Marín, Juan F.; Luján, Lluís; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Thirty-one sheep naturally infected with small ruminant lentiviruses (SRLV) of known genotype (A or B), and clinically affected with neurological disease, pneumonia or arthritis were used to analyse mannose receptor (MR) expression (transcript levels) and proviral load in virus target tissues (lung, mammary gland, CNS and carpal joints). Control sheep were SRLV-seropositive asymptomatic (n = 3), seronegative (n = 3) or with chronic listeriosis, pseudotuberculosis or parasitic cysts (n = 1 in each case). MR expression and proviral load increased with the severity of lesions in most analyzed organs of the SRLV infected sheep and was detected in the affected tissue involved in the corresponding clinical disease (CNS, lung and carpal joint in neurological disease, pneumonia and arthritis animal groups, respectively). The increased MR expression appeared to be SRLV specific and may have a role in lentiviral pathogenesis.