Person:
García Lorente, José Antonio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

García Lorente

First Name

José Antonio

person.page.departamento

Ingeniería

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-2252-2411

person.page.upna

3670

Name

Search Results

Now showing 1 - 10 of 13
  • PublicationOpen Access
    Biodegradable magnesium alloys for personalised temporary implants
    (MDPI, 2023) Hendea, Radu Emil; Raducanu, Doina; Claver Alba, Adrián; García Lorente, José Antonio; Cojocaru, Vasile Danut; Nocivin, Anna; Stanciu, Doina; Serban, Nicolae; Ivanescu, Steliana; Trisca-Rusu, Corneliu; Campian, Radu Septimiu; Institute for Advanced Materials and Mathematics - INAMAT2
    The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—Xray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.
  • PublicationOpen Access
    Adhesion enhancement on a duplex DLC HiPIMS positive pulse doating performed by active screen plasma nitriding pretreatment on 316L stainless steel substrate
    (Hindawi, 2022) Gómez Alonso, Íñigo; García Lorente, José Antonio; Santiago, José A.; Fernández, Iván; Braceras, Íñigo; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua
    Diamond-like carbon (DLC) coatings have been the object of research interest due to properties such as excellent wear resistance, low coefficient of friction, high hardness, high elastic modulus, and biocompatibility. Despite this, DLC has poor adhesion properties, which makes it challenging to use in industrial applications. The application of DLC using the high-power pulse magnetron sputtering (HiPIMS) technique with positive pulses has been studied. Seeking greater DLC coating adherence, the application of a nitriding pretreatment prior to the DLC coating has been studied to improve its adhesion to AISI316L stainless steel soft metal substrates, employing active screen plasma nitriding (ASPN). The influence of the different pretreatment temperatures to reach the maximum levels of adhesion has been analyzed. Scratch methods have been employed to assess adhesion. The elemental composition, morphology, and roughness of the samples have been studied, as well as the behavior of resistance to wear and friction. The results show an improvement in DCL adhesion. Critical loads (LC3) increase at higher pretreatment temperatures, from 48 N for the DLC to 82 N for the ASPN + DLC. Pretreatment has also been shown to be effective in maintaining excellent dry wear resistance properties and a low coefficient of friction.
  • PublicationOpen Access
    Influence of friction coefficient on the performance of cold forming tools
    (MDPI, 2023) Barba Areso, Eneko; Salcedo Pérez, Daniel; Claver Alba, Adrián; Luri Irigoyen, Rodrigo; García Lorente, José Antonio; Ingeniería; Ingeniaritza
    The automotive industry has undergone significant advancements and changes over time, resulting in the use of more complex parts in modern vehicles. As a consequence, the parts used in the manufacturing process are subject to higher stress levels, which reduce their service life. To mitigate this issue, surface treatments can be applied to improve the mechanical properties of the tools. In this study, we examined the impact of surface treatments on reducing tool stress during a cold forming process. The process involved reducing the thickness of a sheet from 6 mm to 2.5 mm, which generated high stresses in the tooling. We used finite element stress calculations to analyze the process and found that by reducing the friction coefficient to 0.1, tool stresses can be reduced by 20%, leading to an increase in tool life. Moreover, the press force and tool wear were also reduced by 18%. To validate the theoretical calculations, we performed field tests in a real manufacturing process.
  • PublicationOpen Access
    Study of the industrial application of diamond-like carbon coatings deposited on advanced tool steels
    (MDPI, 2024) Barba Areso, Eneko; Claver Alba, Adrián; Montalá, Francesc; Luis Pérez, Carmelo Javier; Sala, Neus; Colominas, Carles; García Lorente, José Antonio; Ingeniería; Ingeniaritza
    The utilization of diamond-like carbon (DLC) coatings has emerged as a promising strategy to enhance the performance, durability, and functionality of industrial tools and components. Recognized for their exceptional attributes such as hardness, wear resistance, low friction, and biocompatibility, DLC coatings have achieved widespread acclaim for their potential to improve the capabilities of tool steels for different applications. This present study shows a comprehensive investigation into the application of DLC coatings on a diverse range of tool steel substrates, encompassing 1.2379, 1.2358, Caldie, K340, HWS, and Vanadis 4. The main aim is to show the effects of DLC coatings on these substrates and to provide an in-depth analysis of their properties during forming processes. Furthermore, this study explores the practical utilization of DLC-coated tool steel components, with a particular focus on their role in cold forming dies. Additionally, the study reviews the application of duplex treatments involving plasma nitriding to enhance DLC coating performance. To sum up, this study pursues a threefold objective: to investigate DLC coatings’ performance on diverse tool steel substrates; to assess the potential for improvement through nitriding; and to evaluate the behavior of DLC coatings in the cold stamping of S235 steel, which is of great technological and industrial interest to the cold forging sector.
  • PublicationOpen Access
    Improvement of the tribocorrosion properties of cemented carbide (WC-Tic-Co) samples with PVD coating
    (MDPI, 2022) García Lorente, José Antonio; Claver Alba, Adrián; Marques, Mikel; Almandoz Sánchez, Eluxka; Fernández de Ara, Jonathan; Azkona, Ibon; Institute for Advanced Materials and Mathematics - INAMAT2
    This study aims to investigate the improvement of the tribocorrosion properties of WC-TiC-Co substrates by coating them with hard coatings such as AlCrSiN using cathodic arc deposition. WC-TiC-Co is commonly used in the fabrication of machining and cutting tools; however, there are some materials such as titanium or stainless steel that are difficult to work with; furthermore, in aggressive environments or under high temperatures the performance of the machining tools can be affected, and a failure may occur. This coating is intended to ensure the correct performance of the tools in any conditions. The coatings were characterized by glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Tribocorrosion, tribology and corrosion tests were performed to evaluate the tribocorrosion properties of the samples. Furthermore, mechanical and adhesive properties of the coating were studied using scratch and nanoindentation tests. The results showed improved tribocorrosion properties in the samples combined with good adhesive and mechanical properties. These results show the possibility of using these coated materials in the most demanding cutting and machining applications.
  • PublicationOpen Access
    Antibacterial functionalization of PVD coatings on ceramics
    (MDPI, 2018) Osés Martínez de Zúñiga, Javier; García Fuentes, Gonzalo; García Lorente, José Antonio; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    The application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD) coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN) and titanium nitride (TiN) coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES) and field emission scanning electron microscope (FE-SEM). Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.
  • PublicationOpen Access
    ADDISC lumbar disc prosthesis: analytical and FEA testing of novel implants
    (Elsevier, 2023) Vanaclocha, Amparo; Vanaclocha, Vicente; Atienza, Carlos M.; Jordá Gómez, Pablo; Díaz Jiménez, Cristina; García Lorente, José Antonio; Sáiz Sapena, Nieves; Vanaclocha, Leyre; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    The intact intervertebral disc is a six-freedom degree elastic deformation structure with shock absorption. “Ball-and-socket” TDR do not reproduce these properties inducing zygapophyseal joint overload. Elastomeric TDRs reproduce better normal disc kinematics, but repeated core deformation causes its degeneration. We aimed to create a new TDR (ADDISC) reproducing healthy disc features. We designed TDR, analyzed (Finite Element Analysis), and measured every 500,000 cycles for 10 million cycles of the flexion-extension, lateral bending, and axial rotation cyclic compression bench-testing. In the inlay case, we weighted it and measured its deformation. ADDISC has two semi-spherical articular surfaces, one rotation centre for flexion, another for extension, the third for lateral bending, and a polycarbonate urethane inlay providing shock absorption. The first contact is between PCU and metal surfaces. There is no metal-metal contact up to 2000 N, and CoCr28Mo6 absorbs the load. After 10 million cycles at 1.2–2.0 kN loads, wear 140.96 mg (35.50 mm3 ), but no implant failures. Our TDR has a physiological motion range due to its articular surfaces’ shape and the PCU inlay bumpers, minimizing the facet joint overload. ADDISC mimics healthy disc biomechanics and Instantaneous Rotation Center, absorbs shock, reduces wear, and has excellent long-term endurance
  • PublicationOpen Access
    A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses
    (MDPI, 2020) García Lorente, José Antonio; Rivero Fuente, Pedro J.; Barba Areso, Eneko; Fernández, Iván; Santiago, José A.; Fuente, Gonzalo G.; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    During the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with 'positive pulses'. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.
  • PublicationOpen Access
    Study and optimization of the punching process of steel using the Johnson-Cook damage model
    (MDPI, 2024) Claver Alba, Adrián; Hernández Acosta, Andrea; Barba Areso, Eneko; Fuertes Bonel, Juan Pablo; Torres Salcedo, Alexia; García Lorente, José Antonio; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    Sheet metal forming processes are widely used in applications such as those in the automotive or aerospace industries. Among them, punching is of great interest due to its high productivity and low operating cost. However, it is necessary to optimize these processes and adjust their parameters, such as clearance, shear force or tool geometry, to obtain the best finishes and minimize crack generation. Thus, the main objective of this research work is to optimize the punching process to achieve parts that do not require subsequent processes, such as deburring, by controlling the properties of the starting materials and with the help of tools such as design of experiments and simulations. In the present study, tensile tests were performed on three steels with different compositions and three sample geometries. The information obtained from these tests has allowed us to determine the parameters of the Johnson-Cook damage criteria. Moreover, punching was performed on real parts and compared with simulations to analyze the percentage of burnish surface. The results obtained show that the methodology used was correct and that it can be extrapolated to other types of die-cutting processes by reducing the percentage of surface fractures and predicting the appearance of cracks. Furthermore, it was observed that clearance has a greater influence than processing speed, while the minimum percentage of the burnish area was observed for the minimum values of clearance.
  • PublicationOpen Access
    Corrosion and tribological performance of diamond-like carbon-coated ZK 60 magnesium alloy
    (MDPI, 2023) Claver Alba, Adrián; Fernández, Iván; Santiago, José A.; Díaz-Rodríguez, Pablo; Panizo-Laiz, Miguel; Esparza Gorráiz, Joseba; García Fuentes, Gonzalo; Zalakain Iriazabal, Iñaki; García Lorente, José Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    In this work, hydrogenated and hydrogen-free Diamond-Like Carbon (DLC) coatings were deposited into ZK60 magnesium alloy using the promising coating method High-Power Impulse Magnetron Sputtering (HiPIMS). CrC and WC were used as interlayers of the thin films, and their influence was studied. The structure and composition of the coatings were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Tribological tests, scratch tests, and nanoindentation were performed to obtain information about the mechanical and tribological properties of the coatings. Finally, immersion and electrochemical tests were performed to evaluate the corrosion behavior of the samples. The results showed a homogeneous layer with improved wear resistance, toughness, and hardness in addition to good adhesion to the substrate of the ZK60 magnesium alloy. The hydrogenated DLC coating showed better results that the hydrogen-free thin layer, and relevant differences were observed depending on the interlayer. In this work, the improvement in the tribological and corrosive properties of Mg alloys was studied by using thin layers of DLC and different intermediate layers, achieving similar or even better wear and adhesion values than with thicker layers.