Person: Da Cruz Asmus, Tiago
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Da Cruz Asmus
First Name
Tiago
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-7066-7156
person.page.upna
811596
Name
15 results
Search Results
Now showing 1 - 10 of 15
Publication Open Access A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy rule-based classification systems(2022) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLa fusión de información es el proceso de combinar varios valores numéricos en uno solo que los represente. En problemas con algún tipo de modelado difuso, este proceso generalmente se realiza mediante funciones de fusión o, su subclase más importante, las funciones de agregación. Estas funciones se han aplicado ampliamente en varias técnicas para resolver problemas de clasificación, en particular, en los Sistemas de Clasificación Basados en Reglas Difusas (SCBRDs). En este tipo de clasificador, se han aplicado de forma exitosa las funciones de solapamiento (que son funciones de agregación bivariadas con propiedades deseables) y sus generalizaciones n-dimensionales. Cuando hay incertidumbre con respecto al modelado de las funciones de pertenencia en los SCBRDs, generalmente asociados con términos lingüísticos, se pueden aplicar conjuntos difusos intervalo-valorados. El modelado de etiquetas lingüísticas a través de conjuntos difusos intervalo-valorados en los SCBRDs origino a los Sistemas de Clasificación Basados en Reglas Difusas Intervalo-valorados (IV-SCBRDs). En estos sistemas, los procesos de fusión se calculan mediante funciones de agregación definidas en el contexto intervalar, mientras que las amplitudes de los intervalos de pertenencia asignados están intrínsecamente relacionadas con la incertidumbre con respecto a los valores que están aproximando y, luego, con la calidad de la información que representan. Sin embargo, no existe una guía en la literatura que muestre cómo definir y construir funciones de fusión con valores intervalares que tomen en consideración el control de la calidad de la información. Por todo ello, en esta tesis, desarrollamos un marco para definir funciones de fusión intervalo-valoradas n-dimensionales generalizadas considerando los órdenes admisibles y el control de la calidad de la información. Aplicamos los conceptos desarrollados en un IV-SCBRD considerado como estado del arte (es decir, IVTURS), desarrollando nuestra propia versión basada en operadores de solapamiento con control de la calidad de la información, demostrando que nuestro enfoque mejora el rendimiento del clasificador. Finalmente, desarrollamos un marco para definir funciones de fusión n-dimensionales que actúan en un intervalo real cerrado arbitrario como homólogas de clases conocidas de funciones de fusión que actúan sobre el intervalo unitario, para expandir la aplicabilidad de las funciones de fusión con propiedades deseables a problemas que no involucren un modelado difuso.Publication Open Access A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis(Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISCIntervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.Publication Open Access Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks(Elsevier, 2023) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDue to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎��, 𝑏��)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.Publication Open Access d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications(IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.Publication Open Access General grouping functions(Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSome aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.Publication Open Access On the generalizations of the Choquet integral for application in FRBCs(Springer, 2021) Lucca, Giancarlo; Borges, Eduardo N.; Berri, Rafael A.; Emmendorfer, Leonardo R.; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAn effective way to cope with classification problems, among others, is by using Fuzzy Rule-Based Classification Systems (FRBCSs). These systems are composed by two main components, the Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is responsible for performing the classification of new examples based on the information stored in the KB. A key point in the FRM is how the information given by the fired fuzzy rules is aggregated. Precisely, the aggregation function is the component that differs from the two most widely used FRMs in the specialized literature. In this paper we provide a revision of the literature discussing the generalizations of the Choquet integral that has been applied in the FRM of a FRBCS. To do so, we consider an analysis of different generalizations, by t-norms, copulas, and by F functions. Also, the main contributions of each generalization are discussed.Publication Open Access General admissibly ordered interval-valued overlap functions(CEUR Workshop Proceedings (CEUR-WS.org), 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Sanz Delgado, José Antonio; Wieczynski, Jonata; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaOverlap functions are a class of aggregation functions that measure the verlapping degree between two values. They have been successfully applied in several problems in which associativity is not required, such as classification and image processing. Some generalizations of overlap functions were proposed for them to be applied in problems with more than two classes, such as 𝑛- dimensional and general overlap functions. To measure the overlapping of interval data, interval-valued overlap functions were defined, and, later, they were also generalized in the form of 𝑛-dimensional and general interval-valued overlap functions. In order to apply some of those concepts in problems with interval data considering the use of admissible orders, which are total orders that refine the most used partial order for intervals, 𝑛-dimensional admissibly ordered interval-valued overlap functions were recently introduced, proving to be suitable to be applied in classification problems. However, the sole construction method presented for this kind of function do not allow the use of the well known lexicographical orders. So, in this work we combine previous developments to introduce general admissibly ordered interval-valued overlap functions, while also presenting different construction methods and the possibility to combine such methods, showcasing the flexibility and adaptability of this approach, while also being compatible with the lexicographical orders.Publication Open Access On the normalization of interval data(MDPI, 2020) Santiago, Regivan; Bergamaschi, Flaulles; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe impreciseness of numeric input data can be expressed by intervals. On the other hand, the normalization of numeric data is a usual process in many applications. How do we match the normalization with impreciseness on numeric data? A straightforward answer is that it is enough to apply a correct interval arithmetic, since the normalized exact value will be enclosed in the resulting 'normalized' interval. This paper shows that this approach is not enough since the resulting 'normalized' interval can be even wider than the input intervals. So, we propose a pair of axioms that must be satisfied by an interval arithmetic in order to be applied in the normalization of intervals. We show how some known interval arithmetics behave with respect to these axioms. The paper ends with a discussion about the current paradigm of interval computations.Publication Open Access Fuzzy integrals for edge detection(Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincon, J. A.; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.Publication Open Access Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions(Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaOverlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.