Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Annular apertures in metallic screens as extraordinary transmission and frequency selective surface structures
    (IEEE, 2017) Rodríguez Ulibarri, Pablo; Navarro Cía, Miguel; Rodríguez Berral, Raúl; Mesa, Francisco; Medina, Francisco; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A 2-D periodic array of annular apertures (or ring slots) is studied using an accurate circuit model. The model accounts for distributed and dynamic effects associated with the excitation of high-order modes operating above or below cutoff but not far from their cutoff frequencies. This paper allows to ascertain the substantial differences of the underlying physics when this structure operates as a classical frequency selective surface or in the extraordinary-transmission (ET) regime. A discussion of two different designs working at each regime is provided by means of the equivalent circuit approach (ECA), full wave simulation results, and experimental characterization. The agreement between the equivalent circuit calculation applied here and the simulation and experimental results is very good in all the considered cases. This validates the ECA as an efficient minimal-order model and a low computational-cost design tool for frequency selective surfaces and ET-based devices. Additional scenarios such as oblique incidence and parametric studies of the structural geometry are also considered.
  • PublicationOpen Access
    Low-sidelobe-level millimeter-wave asymmetric bull's eye antenna with minimal profile feeding
    (IEEE, 2024) Navarro Cía, Miguel; Beaskoetxea Gartzia, Unai; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Bull’s eye antennas exhibit remarkable directivity considering their low profile, albeit accompanied by high sidelobes. This undesirable radiation characteristic is tackled here by reporting a complementary split ring feeding whereby the broadside space-wave partially responsible for the high sidelobes is cancelled while the leaky wave is excited effectively. This feeding results in an asymmetric bull’s eye antenna with minimal profile (∼ 0.73λ0) and no protrusions on the radiating interface. The fabricated 10-period antenna operating in the Ka-band shows a directivity of 23.5 dBi, a sidelobe level of −22.9 dB (>6 dB improvement compared to other bull’s eye antennas) and a beamwidth of 3.7◦ and 6.7◦ in the E- and H-plane, respectively.
  • PublicationOpen Access
    Low profile THz periodic leaky-wave antenna
    (IEEE, 2014) Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Rodríguez Ulibarri, Pablo; Etayo Salinas, David; Sorolla Ayza, Mario; Navarro Cía, Miguel; Zehar, Mokhtar; Blary, Karine; Chahadih, Abdallah; Han, Xiang-Lei; Akalin, Tahsin; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a 0.566THz flat leaky-wave antenna, consisting of a central λ0/2 slot surrounded by straight parallel wedge corrugations, is numerically and experimentally analyzed. Simulations show a moderately high gain and no significant differences when compared with a typical square corrugation profile. Numerical comparison is also made for the designed and manufactured antennas. High transmission enhancement in the corrugated case is obtained, compared to that given by a single central slot with no grooves. This kind of antennas finds several applications in different frequency ranges, including the nowadays high-interest range of the THz.
  • PublicationOpen Access
    All-metallic ε-near-zero (ENZ) lens based on ultra-narrow hollow rectangular waveguides: experimental results
    (IEEE, 2014) Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Pacheco-Peña, Víctor; Falcone Lanas, Francisco; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Here we perform numerical and experimental investigation of plano-concave all-metallic ε-near-zero (ENZ) lens with operational frequency f = 144 GHz. The ENZ lens is achieved by stacking an array of narrow hollow rectangular waveguides working near cut-off frequency. Focusing and radiation properties are numerically analyzed and measured. The enhancement of 5.61 dB and directivity of 17.6 dBi are shown. Good agreement between experimental and numerical results is demonstrated.
  • PublicationOpen Access
    Broadband frequency and angular response of a sinusoidal bull’s eye antenna
    (IOP Publishing, 2016) Beaskoetxea Gartzia, Unai; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n = −1 and n = −2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the nearfield behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.