Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 142
  • PublicationOpen Access
    Terajets produced by dielectric cuboids
    (AIP Publishing, 2014) Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Minin, Igor V.; Minin, Oleg V.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The capability of generating terajets using three-dimensional (3D) dielectric cuboids working at terahertz (THZ) frequencies (as analogues of nanojets in the infrared band) is introduced and studied numerically. The focusing performance of the terajets is evaluated in terms of the transversal full width at half maximum (FWHM) along x- and y-directions using different refractive indices for a 3D dielectric cuboid with a fixed geometry, obtaining a quasi-symmetric terajet with a subwavelength resolution of 0.46 wavelengths when the refractive index is n=1.41. Moreover, the backscattering enhancement produced when metal particles are introduced in the terajet region is demonstrated for a 3D dielectric cuboid and compared with its two-dimensional (2D) counterpart. The results of the jet generated for the 3D case are experimentally validated at sub-THZ waves, demonstrating the ability to produce terajets using 3D cuboids.
  • PublicationOpen Access
    Ku band low profile asymmetric Bull’s-Eye antenna with reduced side lobes and monopole feeding
    (IEEE, 2018) Beaskoetxea Gartzia, Unai; Torres García, Alicia E.; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, a linearly polarized low profile and asymmetric Bull’s-Eye leaky wave antenna fed by a monopole operating at 13 GHz is presented. Broadside radiation from the monopole is achieved by surrounding it with an asymmetric array of semicircular metallic strips on a grounded dielectric slab. With this implementation we demonstrate high gain with a weight of less than 80 g and lower side lobe levels compared to previous designs fed by a resonant slot. The measured antenna shows an experimental gain of 19.4 dBi with only 5 periods and a side lobe level of −16 dB (−20.3 dB for the numerical ideal case at f = 12.6 GHz), along with a narrow 6º beamwidth
  • PublicationOpen Access
    Lithography-free perfect narrowband absorbers using simple layered structures
    (IEEE, 2024-10-08) Lezaun Capdevila, Carlos; Navajas Hernández, David; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Light absorbers are key components for multiple applications ranging from heat and energy management to communications and sensing. This work explores different complex permittivity combinations for material-reflector and material-spacer-reflector configurations, achieving perfect absorption under different permittivity regimes and thicknesses. Using silicon carbide, we discuss polarization and angle dependencies, and the potential of exploiting different permittivity regimes within a device for multi-band absorption. This work helps standardize absorber design and offer insights to engineer perfect absorbers for applications such as thermal emission, absorption, communication and sensing.
  • PublicationOpen Access
    Blind spot mitigation in phased array antenna using metamaterials
    (IEEE, 2014) Crépin, Thomas; Martel, Cédric; Gabard, Benjamin; Boust, Fabrice; Martinaud, Jean-Paul; Dousset, Thierry; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Loecker, Claudius; Bertuch, Thomas; Marcotegui Iturmendi, José Antonio; Maci, Stefano; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a metaradome based on a fakir’s bed of nails is designed and tested in order to suppress the blind directions of a 100-element antenna array. The antenna is a microstrip array designed to operate in X-band. The fakir’s bed metamaterial-like was first approximated using analytical formulas before a full-wave numerical optimization. Experimental results are exposed and confronted to numerical results. They show a significant reduction of the blind spot subsequent to the metaradome addition.
  • PublicationOpen Access
    Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes
    (MDPI, 2018) Legaria Lerga, Santiago; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    In this paper, we design and numerically demonstrate an ultra-thin super-oscillatory metalens with a resolution below the diffraction limit. The zones of the lens are implemented using metasurface concepts with hexagonal unit cells. This way, the transparency and, hence, efficiency is optimized, compared to the conventional transparent–opaque zoning approach that introduces, inevitably, a high reflection in the opaque regions. Furthermore, a novel two-step optimization technique, based on evolutionary algorithms, is developed to reduce the side lobes and boost the intensity at the focus. After the design process, we demonstrate that the metalens is able to generate a focal spot of 0.46λ0 (1.4 times below the resolution limit) at the design focal length of 10λ0 with reduced side lobes (the side lobe level being approximately −11 dB). The metalens is optimized at 0.327 THz, and has been validated with numerical simulations.
  • PublicationOpen Access
    Wood zone plate fishnet metalens
    (EDP Sciences, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Fresnel-zone plate lenses provide focusing performance while having low profile. Unfortunately, they usually display higher reflection losses than conventional dielectric lenses. Here, we demonstrate a low-profile Wood zone plate metalens based on the fishnet metamaterial working in a near-zero regime with an equivalent refractive index less than unity (nf = 0.51). The metalens is made of alternating dielectric and fishnet metamaterial concentric rings. The use of fishnet metamaterial allows reducing the reflections from the lens, while maintaining low profile, low cost and ease of manufacturing. The lens is designed towork at theW-band of the millimeter-waves range with a focal length FL = 22.8 mm (7.5 λ0) aiming at antenna or radar system applications. The focusing per- formance of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2.5 dB with respect to a fishnet Soret metalens.
  • PublicationEmbargo
    Terahertz sensing based on metasurfaces
    (Wiley, 2020) Beruete Díaz, Miguel; Jáuregui López, Irati; Institute of Smart Cities - ISC
    The terahertz (THz) band has very attractive characteristics for sensing and biosensing applications, due to some interesting features such as being a non-ionizing radiation, very sensitive to weak interactions, thus, complementing typical spectroscopy systems in the infrared. However, a fundamental drawback is its relatively long wavelength (10–1000 µm) which makes it blind to small features, hindering seriously both thin-film and biological sensing. Recently, new ways to overcome this limitation have become possible thanks to the advent of metasurfaces. These artificial structures are planar screens usually made of periodic metallic resonators and whose electromagnetic response can be controlled at will by design. This design freedom allows metasurfaces to surpass the restrictions of classical THz spectroscopy, by creating fine details comparable to the size of the thin films or microorganisms under test. The strong field concentration near these small metasurface details at resonance makes them highly sensitive to tiny variations in the nearby environment, allowing for an enhanced detection more accurate than classical THz spectroscopy. The main advances in THz metasurface sensors from a historical as well as application-oriented perspective are summarized. The focus is put mainly on thin-film and biological sensors, with an aim to cover the most recent advances in the topic.
  • PublicationOpen Access
    Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling
    (Optical Society of America, 2015) Serebryannikov, Andriy E.; Beruete Díaz, Miguel; Mutlu, Mehmet; Ozbay, Ekmel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Multiband one-way polarization conversion and strong asymmetry in transmission inspired by it are demonstrated in ultrathin sandwiched structures that comprise two twisted aperture-type arrays of complementary split-ring resonators (CSRRs), metallic mesh, and dielectric layers. The basic features of the resulting mechanism originate from the common effect of chirality and tunneling. The emphasis is put on the (nearly) perfect polarization conversion of linear incident polarization into the orthogonal one and related diodelike asymmetric transmission within multiple narrow bands. Desired polarization conversion can be obtained at several resonances for one of the two opposite incidence directions, whereas transmission is fully blocked for the other one. The resonances, at which the (nearly) perfect conversion takes place, are expected to be inherited from similar structures with parallel, i.e., not rotated CSRR arrays that do not enable chirality and, thus, polarization conversion. It is found that the basic transmission and polarization conversion features and, thus, the dominant physics are rather general, enabling efficient engineering of such structures. The lowest-frequency resonance can be obtained in structures made of conventional materials with total thickness less than λ 50/ and up to ten such resonances can correspond to thickness less than λ 20/ .
  • PublicationOpen Access
    Evolutionary algorithms applied to multi-layered radiative cooling metamaterials
    (IEEE, 2022) Lezaun Capdevila, Carlos; Jorajuria Gómez, Tania; Torres García, Alicia E.; Herrera, Pilar; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A newly design method for designing multi-layered radiative cooling metamaterials based on genetic algorithms (GAs) is exposed. The developed GA has been tested in three cases, resulting in three different structures that achieve, theoretically under direct sunlight, a net cooling power of 39.96 W/m 2 , 57.78 W/m 2 and 61.77 W/m 2 . Such devices are composed of 9, 15 and 24 layers respectively with a total thickness of less than 4.8 µm in the worst case. By the nature of the method, fewer design experience in metamaterials is needed, as well as it is free-cost, due to the use of analytical calculations for the emissivity of the meta materials instead of a commercial generic electromagnetic solver. Automated design of radiative cooling multi-layered structures and other applications in the infrared range can be further developed with this work.
  • PublicationOpen Access
    Application of MIR spectroscopy to the evaluation of chemical composition and quality parameters of foal meat: a preliminary study
    (MDPI, 2020) Ruiz Darbonnens, Marta; Beriain Apesteguía, María José; Beruete Díaz, Miguel; Insausti Barrenetxea, Kizkitza; Lorenzo, José M.; Sarriés Martínez, María Victoria; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    The aim of this work was to study the potential of mid-infrared spectroscopy to evaluate the chemical composition and quality parameters of foal meat according to differences based on slaughter ages and finishing diets. In addition, the wavelength ranges which contribute to this meat quality differentiation were also determined. Important characteristics as moisture and total lipid content were well predicted using Mid-Infrared Spectroscopy (MIR) with Rv2 values of 82% and 66%, respectively. Regarding fatty acids, the best models were obtained for arachidonic, vaccenic, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with Rv2 values over 65%. Quality parameters, as instrumental colour and texture and sensory attributes did not reach high prediction coefficients (R2). With the spectra data of the region 2198–1118 cm-1, samples were accurately classified according to slaughter age (78%) and finishing diet (72%). This preliminary research shows the potential of MIR spectroscopy as an alternative tool to traditional meat chemical composition methods. Finally, the wavelength range of the spectrum from 2198 to 1118 cm-1 showed good results for classification purposes.