Beruete Díaz, Miguel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Beruete Díaz
First Name
Miguel
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
18 results
Search Results
Now showing 1 - 10 of 18
Publication Open Access THz tripod metasurfaces for sensing applications: from the basic, to more elaborated designs(IEEE, 2021) Jáuregui López, Irati; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work, we propose, design, and evaluate three types of : three types of metasurfaces using tripod-shaped unit cells when working as thin-film sensing devices. The three meta-atoms of the proposed metasensors area simple solid tripod, a hollow tripod, and a hollow tripod structure with arms.The best design showed a mean numerical sensitivity of 1.42 × 10−4nm for extremely thin samples, meaning an improvement of 381% with respect to the initial designs. These results highlight the importance of using metastructures with complex geometries that enable high-intensity electric field distributions over the whole metasurface.Publication Open Access All-metallic ε-near-zero (ENZ) lens based on ultra-narrow hollow rectangular waveguides: experimental results(IEEE, 2014) Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Pacheco-Peña, Víctor; Falcone Lanas, Francisco; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHere we perform numerical and experimental investigation of plano-concave all-metallic ε-near-zero (ENZ) lens with operational frequency f = 144 GHz. The ENZ lens is achieved by stacking an array of narrow hollow rectangular waveguides working near cut-off frequency. Focusing and radiation properties are numerically analyzed and measured. The enhancement of 5.61 dB and directivity of 17.6 dBi are shown. Good agreement between experimental and numerical results is demonstrated.Publication Open Access Soret fishnet metalens antenna(Springer Nature, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Crespo López, Gonzalo; Teniente Vallinas, Jorge; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaAt the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all themeritsof classicalSoret lenses suchas lowprofile, lowcost andeaseofmanufacturing. It is designed for the W-band of themillimeter-waves range with a subwavelength focal lengthFL51.58 mm(0.5l0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ,2 dB with respect to a fishnet Soret lens without the fishnet metamaterial.Publication Open Access Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle(IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.Publication Open Access Tunable beam steering enabled by graphene metamaterials(Optical Society of America, 2016) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Khromova, Irina; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.Publication Open Access Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimetre waves(Wiley, 2016) Orazbayev, Bakhtiyar; Mohammadi Estakhri, Nasim; Alù, Andrea; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA metasurface carpet cloak for millimeter-wave range with polarization-independent performance is experimentally demonstrated. It is shown that the cloak is able to mimic the ground plane by fully restoring the amplitude and phase distributions for both transverse electric and transverse magnetic polarizations, with a relatively wide frequency and angular widths response.Publication Open Access Exploiting the dispersion of the double-negative-index fishnet metamaterial to create a broadband low-profile metallic lens(Optical Society of America, 2015) Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaMetamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.Publication Open Access Wood zone plate fishnet metalens(EDP Sciences, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaFresnel-zone plate lenses provide focusing performance while having low profile. Unfortunately, they usually display higher reflection losses than conventional dielectric lenses. Here, we demonstrate a low-profile Wood zone plate metalens based on the fishnet metamaterial working in a near-zero regime with an equivalent refractive index less than unity (nf = 0.51). The metalens is made of alternating dielectric and fishnet metamaterial concentric rings. The use of fishnet metamaterial allows reducing the reflections from the lens, while maintaining low profile, low cost and ease of manufacturing. The lens is designed towork at theW-band of the millimeter-waves range with a focal length FL = 22.8 mm (7.5 λ0) aiming at antenna or radar system applications. The focusing per- formance of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2.5 dB with respect to a fishnet Soret metalens.Publication Open Access Zoned near-zero refractive index fishnet lens antenna: steering millimeter waves(AIP Publishing, 2014) Pacheco-Peña, Víctor; Orazbayev, Bakhtiyar; Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f=56.7GHz (wavelength = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL= 9 wavelengths, exhibits a refractive index n = 0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.Publication Open Access Wideband backscattering reduction at terahertz using compound reflection grating(Optical Society of America, 2017) Orazbayev, Bakhtiyar; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBackscattering reduction is usually achieved by using either absorbers or diffractions gratings at the expense of a narrow bandwidth. In this paper, we propose a different strategy based on a metallic compound reflection grating (CRG). We demonstrate that this structure allows a strong and broadband (fractional bandwidth, FBW ≈57%) backscattering reduction in the terahertz (THz) range by efficiently transferring the incident energy to the diffracted modes. The design is analyzed in terms of equivalent circuit and numerical simulations and the results are corroborated by a manufactured prototype operating at 0.35 THz.