Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Experimental demonstration of deeply subwavelength dielectric sensing with epsilon-near-zero (ENZ) waveguides
    (American Institute of Physics, 2022) Beruete Díaz, Miguel; Engheta, Nader; Pacheco-Peña, Víctor; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this Letter, an all metallic sensor based on ε-near-zero (ENZ) metamaterials is studied both numerically and experimentally when working at microwave frequencies. To emulate an ENZ medium, a sensor is made by using a narrow hollow rectangular waveguide, working near the cutoff frequency of its fundamental TE 10 mode. The performance of the sensor is systematically evaluated by placing subwavelength dielectric analytes (with different sizes and relative permittivities) within the ENZ waveguide and moving them along the propagation and transversal axes. It is experimentally demonstrated how this ENZ sensor is able to detect deeply subwavelength dielectric bodies of sizes up to 0.04λ and height 5 × 10 −3 λ with high sensitivities (and the figure of merit) up to 0.05 1/RIU (∼0.6 1/GHz) and 0.6 1/RIU when considering the sensor working as a frequency- or amplitude-shift-based device, respectively.
  • PublicationOpen Access
    Dielectric sensing of deeply subwavelength analytes using epsilon-near-zero waveguides
    (IEEE, 2024-10-08) Lezaun Capdevila, Carlos; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The advent of metamaterials brought new wave-matter interaction paradigms to manipulate field and waves at will. Their applications are numerous: antennas, lenses, invisibility cloaking, computing, vortex beams and more. In turn, epsilon-near-zero (ENZ) metamaterials opened up new phenomena for light manipulation due to their exotic propagation constant, wavenumber and characteristic impedance. In 2008, it was demonstrated that a rectangular waveguide can emulate ENZ media by working near the cutoff frequency [1]. Moreover, the incredible field confinement inside the ENZ waveguide provided interesting features for sensing applications [2]. Our work further develops the idea of a dielectric body sensor based on a ENZ waveguide by considering an analyte partially filling the waveguide [3] and demonstrating empirically the setup [4].
  • PublicationOpen Access
    On the performance of an ENZ-based sensor using transmission line theory and effective medium approach
    (IOP Publishing, 2019) Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Rodríguez Ulibarri, Pablo; Engheta, Nader; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper we perform an in-depth theoretical studyofa sensing platform based on epsilon-near- zero (ENZ) metamaterials. The structure proposed for sensing is a narrow metallic waveguide channel. An equivalent circuit model is rigorouslydeduced using transmission line theory, considering several configurations for a dielectric body (analyte sample) inserted within the narrow channel, showing good agreement with results obtained from numerical simulations. The transmission line model is able to reproduce even the most peculiar details ofthe sensing platform response. Its performance is then evaluated byvarying systematically the size, position and permittivity ofthe analyte, and height ofthe ENZ channel. It is shown that the sensor is capable ofdetecting changes in the permittivity/ refractive index or position even with deeplysubwavelength analyte sizes (∼0.05λ0), giving a sensitivity up to 0.03m/RIU and a figure ofMerit∼25. The effective medium approach is evaluated by treating the inhomogeneous cross-section ofthe analyte as a transmission line filled with a homogeneous material.
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.
  • PublicationOpen Access
    Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes
    (MDPI, 2018) Legaria Lerga, Santiago; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    In this paper, we design and numerically demonstrate an ultra-thin super-oscillatory metalens with a resolution below the diffraction limit. The zones of the lens are implemented using metasurface concepts with hexagonal unit cells. This way, the transparency and, hence, efficiency is optimized, compared to the conventional transparent–opaque zoning approach that introduces, inevitably, a high reflection in the opaque regions. Furthermore, a novel two-step optimization technique, based on evolutionary algorithms, is developed to reduce the side lobes and boost the intensity at the focus. After the design process, we demonstrate that the metalens is able to generate a focal spot of 0.46λ0 (1.4 times below the resolution limit) at the design focal length of 10λ0 with reduced side lobes (the side lobe level being approximately −11 dB). The metalens is optimized at 0.327 THz, and has been validated with numerical simulations.
  • PublicationOpen Access
    Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies
    (American Physical Society, 2017) Pacheco-Peña, Víctor; Engheta, Nader; Kuznetsov, Sergei A.; Gentselev, Alexandr; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the “terahertz gap.” A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.
  • PublicationOpen Access
    Epsilon-near-zero metalenses operating in the visible
    (Elsevier, 2016) Pacheco-Peña, Víctor; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Several converging lenses working in the permittivity near to zero (ENZ) regime at optical frequencies are designed using an array of metal-dielectric-metal plasmonic waveguides. These plasmonic waveguides show a dispersive nature that enable to mimic an effective ENZ medium when using the fast wave transverse electric (TE1) mode near its cut-off wavelength. By arranging multiple plasmonic waveguides with the correct engineered dimensions, several metalenses, including graded index (GRIN) ones, and diffractive optical elements (i.e., zoned metalenses) are proposed. The metalenses are designed at l0 = 474.9nm (f = 631.67THz) with a focal length of 10.75l0. Numerical results demonstrate that the best performance is obtained for the case of the GRIN metalens in terms of the focal position, transversal resolution and thickness, reducing its volume up to ∼52.3% with respect to the smooth-profiled plano-concave metalens.