Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 52
  • PublicationOpen Access
    Mid-infrared plasmonic inductors: enhancing inductance with meandering lines
    (Nature Publishing Group, 2014) Torres Landívar, Víctor; Ortuño Molinero, Rubén; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Griol, Amadeu; Martínez, Alejandro; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua: 055/01/11; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17â€...THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling ofinfrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.
  • PublicationOpen Access
    Localized photonic jets from flat, three-dimensional dielectric cuboids in reflection mode
    (Optical Society of America, 2015) Minin, Igor V.; Minin, Oleg V.; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A photonic jet (a terajet at terahertz frequencies) commonly denotes a specific, spatially localized region in the near field on the front side of a dielectric particle with a diameter comparable with the wavelength illuminated by a plane wave on its back side (i.e., the jet emerges from the shadow surface of a dielectric particle). In this Letter, the formation of a photonic jet is demonstrated using the recently proposed three-dimensional (3D) dielectric cuboids working in the “reflection” mode when the specific, spatially localized region is localized in the direction of the incident wavefront. The results of the simulations based on the Finite Integration Technique are discussed. All dimensions are given in wavelength units so that all results can be scaled to any frequency of interest, including optical frequencies, thus simplifying the fabrication process compared with spherical dielectrics. The results presented here may be of interest for novel applications, including microscopy techniques and sensors.
  • PublicationOpen Access
    Increasing surface plasmons propagation via photonic nanojets with periodically spaced 3D dielectric cuboids
    (MDPI, 2016) Pacheco-Peña, Víctor; Minin, Igor V.; Minin, Oleg V.; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A structure based on periodically arranged 3D dielectric cuboids connected by photonic nanojets (PNJs) is proposed with the aim of increasing the propagation distance of surface plasmon polaritons (SPPs) at the telecom wavelength of 1550 nm. The performance of the structure is evaluated and compared with the case without the cuboids demonstrating that the SPPs propagation length is enhanced by a factor greater than 2, reaching a value of approximately 190, when the gap between the cuboids is 2.50. Also, the dependence of the propagation length with the height of the cubes is evaluated, showing that this parameter is critical for a good performance of the chain. A subwavelength resolution is obtained for all the jets generated at the output of the cuboids.
  • PublicationOpen Access
    Epsilon-near-zero metalenses operating in the visible
    (Elsevier, 2016) Pacheco-Peña, Víctor; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Several converging lenses working in the permittivity near to zero (ENZ) regime at optical frequencies are designed using an array of metal-dielectric-metal plasmonic waveguides. These plasmonic waveguides show a dispersive nature that enable to mimic an effective ENZ medium when using the fast wave transverse electric (TE1) mode near its cut-off wavelength. By arranging multiple plasmonic waveguides with the correct engineered dimensions, several metalenses, including graded index (GRIN) ones, and diffractive optical elements (i.e., zoned metalenses) are proposed. The metalenses are designed at l0 = 474.9nm (f = 631.67THz) with a focal length of 10.75l0. Numerical results demonstrate that the best performance is obtained for the case of the GRIN metalens in terms of the focal position, transversal resolution and thickness, reducing its volume up to ∼52.3% with respect to the smooth-profiled plano-concave metalens.
  • PublicationOpen Access
    Exploiting the dispersion of the double-negative-index fishnet metamaterial to create a broadband low-profile metallic lens
    (Optical Society of America, 2015) Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.
  • PublicationOpen Access
    Low profile THz periodic leaky-wave antenna
    (IEEE, 2014) Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Rodríguez Ulibarri, Pablo; Etayo Salinas, David; Sorolla Ayza, Mario; Navarro Cía, Miguel; Zehar, Mokhtar; Blary, Karine; Chahadih, Abdallah; Han, Xiang-Lei; Akalin, Tahsin; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a 0.566THz flat leaky-wave antenna, consisting of a central λ0/2 slot surrounded by straight parallel wedge corrugations, is numerically and experimentally analyzed. Simulations show a moderately high gain and no significant differences when compared with a typical square corrugation profile. Numerical comparison is also made for the designed and manufactured antennas. High transmission enhancement in the corrugated case is obtained, compared to that given by a single central slot with no grooves. This kind of antennas finds several applications in different frequency ranges, including the nowadays high-interest range of the THz.
  • PublicationOpen Access
    Compact dual-band terahertz quarter-wave plate metasurface
    (IEEE, 2014) Torres Landívar, Víctor; Etayo Salinas, David; Ortuño Molinero, Rubén; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-λ and 0.29-λ thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.
  • PublicationOpen Access
    Tunable beam steering enabled by graphene metamaterials
    (Optical Society of America, 2016) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Khromova, Irina; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.
  • PublicationOpen Access
    Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission
    (American Institute of Physics, 2011) Beruete Díaz, Miguel; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this letter we present an in-depth circuit analysis of anomalous extraordinary transmission ET through subwavelength slit and hole arrrays loaded by a dielectric slab. We show the key role played by the thickness of the dielectric slab in order to enhance the transmission for TE-polarized waves incident electric field parallel to the slits or to the short in-plane period in hole arrays arranged in rectangular lattice within the cut-off regime of the apertures and to suppress Wood’s anomaly. Analytical and numerical results together with experimental data are presented, showing good agreement among them. This work provides physical insight of the underlying mechanism governing anomalous ET and offers further independent control over orthogonal polarized waves impinging into subwavelength aperture arrays.
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.