Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Radiative cooling properties of portlandite and tobermorite: two cementitious minerals of great relevance in concrete science and technology
    (American Chemical Society, 2023-06-23) Dolado, Jorge S.; Goracci, Guido; Arrese-Igor, Silvia; Ayuela, Andrés; Torres Betancourt, Angie Tatiana; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Gaitero, Juan J.; Cagnoni, Matteo; Cappelluti, Federica; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Although concrete and cement-based materials are the most engineered materials employed by mankind, their potential for use in daytime radiative cooling applications has yet to be fully explored. Due to its complex structure, which is composed of multiple phases and textural details, fine-tuning of concrete is impossible without first analyzing its most important ingredients. Here, the radiative cooling properties of Portlandite (Ca(OH)2) and Tobermorite (Ca5Si6O16(OH)2·4H2O) are studied due to their crucial relevance in cement and concrete science and technology. Our findings demonstrate that, in contrast to concrete (which is a strong infrared emitter but a poor sun reflector), both Portlandite and Tobermorite exhibit good radiative cooling capabilities. These results provide solid evidence that, with the correct optimization of composition and porosity, concrete can be transformed into a material suitable for daytime radiative cooling.
  • PublicationOpen Access
    Enhancing the infrared and visible emission properties of calcium silicate hydrate for radiative cooling using metamaterials
    (IEEE, 2022) Lezaun Capdevila, Carlos; Dolado, Jorge S.; Torres García, Alicia E.; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Two periodic structures composed of metal cylinders with different orientations are used to improve the solar reflection of calcium silicate hydrate (CSH) while maintaining its atmospheric emission. Interesting effects have been found when the distance between bars is small, suggesting that lattice effects, arising from the interaction between the rods could be leveraged in the design of these metamaterials. The size of the metal bars is selected based on state of the art micro-manufacturing techniques. This study limits its scope to a CSH gel model; i.e. the most important component of cement-based materials. Further research will be undertaken to consider a best description of the dielectric function of concrete.
  • PublicationOpen Access
    Towards cooling concrete: evaluation of cement and cement composites under realistic climatic conditions
    (Elsevier, 2025-04-15) Torres García, Alicia E.; Agbaoye, Ridwan O.; Carlosena Remírez, Laura; Goracci, Guido; Lezaun Capdevila, Carlos; Dolado, Jorge S.; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza
    Finding scalable, cost-effective and environmentally safe solutions for Passive Daytime Radiative Cooling (PDRC) is essential for addressing energy and climate challenges. This study demonstrates the feasibility of achieving PDRC using only cement-based compounds, without the need for additional whitening agents or other additives. Unlike previous approaches that rely on external additives, the proposed solution leverages two fundamental cement phases—portlandite and tobermorite—offering a scalable and low-impact alternative. The research evaluates the radiative cooling potential of these phases, along with two widely used cements—white cement (WC) and ordinary Portland cement (OPC), by analyzing and comparing their homogenized complex permittivities, derived using the Kramers-Kronig (KK) method. Simulations were conducted to assess the cooling power over one year across three different climates using actual meteorological data. The portlandite exhibits positive Pcool, maintaining a temperature equal to or below the ambient temperature more than 90 % of the time in dry desert and warm temperate locations. Indoor controlled measurements results reveal that portlandite (CH) may exhibit temperatures 15 °C lower than OPC and 5 °C lower than WC.