Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 12
  • PublicationOpen Access
    Metasurface-based ultrathin carpet cloaks for millimeter waves
    (2017) Orazbayev, Bakhtiyar; Mohammadi Estakhri, Nasim; Alù, Andrea; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A metasurface carpet cloak for millimetre-wave range with polarization independent performance is experimentally demonstrated. It is shown that the cloak is able to mimic the ground plane by fully restoring the amplitude and phase distributions for both TE and TM polarizations, with a relatively wide frequency and angular widths response.
  • PublicationOpen Access
    Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimetre waves
    (Wiley, 2016) Orazbayev, Bakhtiyar; Mohammadi Estakhri, Nasim; Alù, Andrea; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A metasurface carpet cloak for millimeter-wave range with polarization-independent performance is experimentally demonstrated. It is shown that the cloak is able to mimic the ground plane by fully restoring the amplitude and phase distributions for both transverse electric and transverse magnetic polarizations, with a relatively wide frequency and angular widths response.
  • PublicationOpen Access
    Labyrinth metasurface absorber for ultra-high-sensitivity terahertz thin film sensing
    (Wiley, 2018) Jáuregui López, Irati; Rodríguez Ulibarri, Pablo; Urrutia Azcona, Aitor; Kuznetsov, Sergei A.; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, a labyrinth metasurface sensor operating at the low‐frequency edge of the THz band is presented. Its intricate shape leads to a high electric field confinement on the surface of the structure, resulting in ultrasensitive performance, able to detect samples of the order of tens of nanometers at a wavelength of the order of millimeters (i.e., five orders of magnitude larger). The sensing capabilities of the labyrinth metasurface are evaluated numerically and experimentally by covering the metallic face with tin dioxide (SnO2) thin films with thicknesses ranging from 24 to 345 nm. A redshift of the resonant frequency is observed as the analyte thickness increases, until reaching a thickness of 20 μm, where the response saturates. A maximum sensitivity of more than 800 and a figure of merit near 4500 nm−1 are achieved, allowing discriminating differences in the SnO2 thickness of less than 25 nm, and improving previous works by a factor of 35. This result can open a new paradigm of ultrasensitive devices based on intricate metageometries overcoming the limitations of classical metasurface sensor designs based on periodic metaatoms.
  • PublicationOpen Access
    Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: experimental demonstration
    (Wiley, 2021-05-06) Legaria Lerga, Santiago; Teniente Vallinas, Jorge; Kuznetsov, Sergei A.; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    The performance of an ultrathin (thickness < 0.04λ 0) metasurface superoscillatory lens (metaSOL) is experimentally demonstrated in the terahertz (THz) range. The metaSOL is designed using two different hexagonal unit cells to improve the efficiency and properties of the conventional transparent–opaque zoning approach. The focusing metastructure produces, at a frequency f exp = 295 GHz, a sharp focal spot 8.9λ exp away from its output surface with a transversal resolution of 0.52λ exp (≈25% below the resolution limit imposed by diffraction), a power enhancement of 18.2 dB, and very low side lobe level (−13 dB). Resolution below the diffraction limit is demonstrated in a broad fractional operation bandwidth of 18%. The focusing capabilities of the proposed metaSOL show its potential use in a range of applications such as THz imaging, microscopy, and communications.
  • PublicationOpen Access
    Flat lens antenna using gap waveguide technology at millimeter waves
    (IEEE, 2021) Pérez Quintana, Dayan; Bilitos, Christos; Ruiz-García, Jorge; González-Ovejero, David; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a flat lens antenna using Gap Waveguide (GW) technology working in the millimeter waves band was designed. The metamaterial lens is fed using a Groove Gap Waveguide (GGW) horn antenna in order to achieve a plane wavefront at broadside. Both devices, metalens and GGW antenna achieve excellent radiation results when combined together. Due to metallic composition, the structure presents more robustness, low loss, and adaptability to a flat surface, able to be used in millimeter wave application.
  • PublicationOpen Access
    Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes
    (MDPI, 2018) Legaria Lerga, Santiago; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    In this paper, we design and numerically demonstrate an ultra-thin super-oscillatory metalens with a resolution below the diffraction limit. The zones of the lens are implemented using metasurface concepts with hexagonal unit cells. This way, the transparency and, hence, efficiency is optimized, compared to the conventional transparent–opaque zoning approach that introduces, inevitably, a high reflection in the opaque regions. Furthermore, a novel two-step optimization technique, based on evolutionary algorithms, is developed to reduce the side lobes and boost the intensity at the focus. After the design process, we demonstrate that the metalens is able to generate a focal spot of 0.46λ0 (1.4 times below the resolution limit) at the design focal length of 10λ0 with reduced side lobes (the side lobe level being approximately −11 dB). The metalens is optimized at 0.327 THz, and has been validated with numerical simulations.
  • PublicationEmbargo
    Terahertz sensing based on metasurfaces
    (Wiley, 2020) Beruete Díaz, Miguel; Jáuregui López, Irati; Institute of Smart Cities - ISC
    The terahertz (THz) band has very attractive characteristics for sensing and biosensing applications, due to some interesting features such as being a non-ionizing radiation, very sensitive to weak interactions, thus, complementing typical spectroscopy systems in the infrared. However, a fundamental drawback is its relatively long wavelength (10–1000 µm) which makes it blind to small features, hindering seriously both thin-film and biological sensing. Recently, new ways to overcome this limitation have become possible thanks to the advent of metasurfaces. These artificial structures are planar screens usually made of periodic metallic resonators and whose electromagnetic response can be controlled at will by design. This design freedom allows metasurfaces to surpass the restrictions of classical THz spectroscopy, by creating fine details comparable to the size of the thin films or microorganisms under test. The strong field concentration near these small metasurface details at resonance makes them highly sensitive to tiny variations in the nearby environment, allowing for an enhanced detection more accurate than classical THz spectroscopy. The main advances in THz metasurface sensors from a historical as well as application-oriented perspective are summarized. The focus is put mainly on thin-film and biological sensors, with an aim to cover the most recent advances in the topic.
  • PublicationOpen Access
    Hyperbolic lens antenna in groove gap waveguide technology at sub-millimeter waves
    (IEEE, 2022) Pérez Quintana, Dayan; Biurrun Quel, Carlos; Ederra Urzainqui, Íñigo; González-Ovejero, David; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a flat hyperbolic lens antenna using Groove Gap Waveguide (GGW) technology is designed at 300 GHz. A GGW horn antenna is used to feed the metamaterial lens placed in a parallel plate waveguide (PPW), in order to increase the directivity in the direction of propagation. The combination of both devices, the metalens and the GGW antenna, achieves excellent radiation performance.
  • PublicationOpen Access
    Labyrinth absorber based on metageometries metasurface for fungi detection
    (IEEE, 2020) Jáuregui López, Irati; Rodríguez Ulibarri, Pablo; Kuznetsov, Sergei A.; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper a labyrinth metasurface based in the new paradigm of metageometries is designed to operate in the Terahertz (THz) band as a biosensor. First, a numerical study is carried out to study the performance of the metasurface as a refractometer when working in two different configurations: transmission and reflection. Then, its performance as a fungi detector is evaluated and a comparison with other devices is performed, showing that the sensitivity and Figure of Merit (FOM) can be enhanced by the use of these kind of devices, in comparison with the classical approach of metaatoms. Particularly, the designed structure is able to detect 5 fungi elements arbitrarily distributed on the unit cell, which is equivalent to a concentration of 0.004/μm 2 , improving the results available in the literature by a factor of more than 4.
  • PublicationOpen Access
    Experimental demonstration of metamaterials application for mitigating scan blindness in phased array antennas
    (EDP Sciences, 2016) Rodríguez Ulibarri, Pablo; Crépin, Thomas; Martel, Cédric; Boust, Fabrice; Falcone Lanas, Francisco; Loecker, Claudius; Herbertz, Kai; Bertuch, Thomas; Dousset, Thierry; Martinaud, Jean-Paul; Maci, Stefano; Marcotegui Iturmendi, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This paper presents two metamaterial-inspired solutions to mitigate the scan blindness effects in a phased array antenna. In the first solution, portions of a bed of nails are introduced in the radome to prevent the excitation of surface waves. In the second solution, a superstrate metasurface is designed to synthesize a permittivity tensor optimized to achieve a wide angle impedance matching. In both approaches, the numerical simulations are successfully compared with measurements of a phased array antenna prototype with 100 elements. The wire medium-based solution reveals an effective way for reducing the blind-spot in a wide bandwidth, while the metaradome has been found less suitable for the same purpose.