Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Wideband circularly-polarized gap waveguide-based antenna design
    (IEEE, 2025-03-12) Leoz-Beltrán, Iñigo; Iriarte Galarregui, Juan Carlos; Pérez Quintana, Dayan; Teberio Berdún, Fernando; Beruete Díaz, Miguel; Ederra Urzainqui, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    This paper presents the design of an all-metal antenna based on Gap Waveguide technology. The antenna, which is realized using a Ridge Gap Waveguide, consists of just two layers, maintaining a compact size. The first layer is made up of two perpendicularly placed arms, which comprise the feeding, and the second layer hosts a diamond shaped slot and a horn, which comprise the radiator. Simulations show that the design achieves a remarkable bandwidth equivalent to the 31.43% of the central frequency in terms of both S11 parameter, being below -10 dB, and Axial Ratio, being below 3 dB.
  • PublicationOpen Access
    Compact antennas in ridge gap waveguide with circular polarization
    (IEEE, 2020) Pérez Quintana, Dayan; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, two compact antennas in Ridge Gap Waveguide (RGW) technology, working at 60 GHz, with a high-purity circular polarization (CP) within a broad bandwidth are manufactured and measured. The antennas are fed from the bottom plane with a WR-15 waveguide (V-band), which couples the wave to the RGW. CP is generated in a simple and effective way, by means of two orthogonal feeder arms that excite a CP in a diamond-shaped slot on top. A broadband matching with reflection coefficient magnitude below -10 dB (S-11 < -10 dB) is achieved from approximately 60.3 to 69.6 GHz (> 9 GHz). Applying the axial ratio criterion (AR < 3dB) the bandwidth in CP is 14.48%, with respect to the central frequency (59 to 70 GHz). The maximum gain in both designs is obtained at 67 GHz, with a value of 5.49 and 11.12 dB respectively.
  • PublicationOpen Access
    A gap waveguide fed circular polarization antennas in the millimeter wave range
    (IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, a novel circular polarization (CP) antennas in ridge gap waveguide (RGW) working in the V-band of the millimeter-wave spectrum is presented. CP is generated in a simple and effective way by means of two orthogonal feeder arms that excite a CP in a rotated square-shaped slot placed on top metallic lid. Parametric simulation studies demonstrate that a difference between both arms length of approximately λ/4 leads to high-purity CP within a relatively broad bandwidth. A square-shaped slot antenna is manufactured and experimentally analyzed. A broadband matching with a reflection coefficient magnitude below -10 dB (S11 <; -10 dB) is achieved from 60.5 to 69.3 GHz. Applying the axial ratio criterion (AR <; 3 dB) the bandwidth in CP is 10.74%, with respect to the central frequency. The maximum gain at broadside is 5.49 dB at 66.8 GHz.
  • PublicationOpen Access
    Compact groove diamond antenna in gap waveguide technology with broadband circular polarization at millimeter waves
    (IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, three compact antennas using the Ridge Gap Waveguide (RGW) technology working in the millimeter-wave band (60 GHz), with a high-purity and broadband circular polarization (CP) are numerically and experimentally analyzed. The structure is fed from the bottom by means of a standard WR-15 waveguide (V-band) to make it compatible with standard measurement systems. It is coupled with a miniaturized step transition to a ridgeline that ends in two arms of different lengths. CP is generated in a simple and effective way, by means of two orthogonal feeder arms that excite a CP in a diamond-shaped slot on top. Simulations and measurements have an excellent agreement reaching a matching bandwidth (S11 <-10 dB) from 60.3 to 69.6 GHz (> 9 GHz). Applying the axial ratio criterion (AR < 3 dB) the bandwidth in CP is 14.48%, with respect to the central frequency (59 to 70 GHz). The maximum gain is obtained with the most evolved design incorporating a diamond aperture with a horn taper and a circular groove, reaching a value of 11.12 dB at 67.3 GHz.
  • PublicationOpen Access
    Full-space metasurface at millimeter-wave frequencies
    (IEEE, 2023) Ruiz Fernández de Arcaya, María; Marzo Pérez, Asier; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    Conventional metasurfaces provide control over the electromagnetic waves in a single working frequency operating either in transmission or reflection. Full-Space Metasurfaces (FSM) are an extension that allows operation at two different frequencies with independent functionalities in transmission and reflection. This paper presents a gradient index FSM device based on a 3-layered unit cell where the phase modulation is implemented following the Pancharatman-Berry (PB) principle. The device is designed to operate at millimeter waves, with the lowest frequency operating in reflection and the highest one in transmission. To check the structure performance, a metasurface was designed to provide beam steering in reflection at 49.4 GHz and an amplitude image hologram in transmission at 104 GHz.
  • PublicationOpen Access
    Ultrathin sub-terahertz half-wave plate with high conversion efficiency based on zigzag metasurface
    (IEEE, 2020) Moreno-Peñarrubia, Alexia; Kuznetsov, Sergei A.; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this communication, an ultrathin transmissive half-wave plate (HWP) based on a bi-layered zigzag metasurface operating at the lower frequency edge of the terahertz (THz) spectrum is numerically and experimentally studied. The thickness of HWP is only 100 μm and less than λ /20 at the operation frequency, and it achieves an amplitude transmission efficiency over 90% and a cross-polarization discrimination around 30 dB within a fractional bandwidth near 9%. A detailed analysis of the device robustness with respect to layer misalignments is carried out by designing and fabricating two additional devices with the maximum possible shift between layers along both transverse directions. The results show that the device is extremely robust relative to a misalignment along x and exhibits a frequency shift with misalignments along y , while maintaining in all cases an excellent performance as a HWP. The communication ends with a final study to ascertain a physical mechanism that explains the robustness of the device in regard to misalignments. These results complement and extend the reach of metasurfaces in the emerging THz band.