Beruete Díaz, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Beruete Díaz

First Name

Miguel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Giant photodegradation rate enabled by vertically grown 1T/2H MoS2 catalyst on top of silver nanoparticles
    (Wiley, 2024-08-27) Mouloua, Driss; Rajput, Nitul S.; Lejeune, Michael; Beruete Díaz, Miguel; El Marssi, Mimoun; El Khakani, My Ali; Jouiad, Mustapha; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The exaltation of the photodegradation performance of dichalcogenide MoS2 grown on top of silver nanoparticles (Ag-NPs) is reported on. The fabricated MoS2 nanosheets nucleate vertically from Ag-NPs seeds, enabling the growth of both metallic and semiconductor phases 1T/2H-MoS2. Findings reveal remarkable enhancement of the Raman scattering and an exceptional broadband optical absorption attributed to plasmonic effects induced by the presence of both metallic 1T-MoS2 and Ag-NPS at 2H-MoS2 interfaces. To leverage this effect, photodegradation tests are conducted to remove methyl orange pollutant. Notably, results reveal a significant increase in photodegradation efficiency and rate constant, reaching up to 120% and 550% over pristine 2H-MoS2, respectively. This finding underscores the role of Ag-NPs and 1T-MoS2 tandem to unlock the superior photodegradation properties of vertically aligned 2H-MoS2 toward methyl orange, paving the way for the development of dichalcogenide-based hybrid photocatalyst for wastewater treatment and environmental remediation.
  • PublicationOpen Access
    Steering surface plasmons with a graded index dielectric medium
    (IOP Publishing, 2018) Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The arbitrary control of surface plasmon (SP) propagation has become an intense research topic for several decades. This is due to the fact that they can be used in a variety of fields such as optical trapping, nanoantennas and medical applications. In this communication, the graded index technique is applied in the design of several steerers able to tailor the direction of propagation of the incident SPs by simply changing the height of a dielectric block on top of a semi?infinite metal slab. The design procedure is shown and the structures are numerically evaluated demonstrating a good agreement with the analytical calculations, with the SPs deflected at the design angles (θ ranging from 10° to 60°) with a wide bandwidth steering of 60 nm around the design value (633 nm)
  • PublicationOpen Access
    Mid-infrared plasmonic inductors: enhancing inductance with meandering lines
    (Nature Publishing Group, 2014) Torres Landívar, Víctor; Ortuño Molinero, Rubén; Rodríguez Ulibarri, Pablo; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Griol, Amadeu; Martínez, Alejandro; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua: 055/01/11; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17â€...THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling ofinfrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.