Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Ojaroudi Parchin, Naser; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents a study of a planar antenna-array inspired by the metamaterial concept where the resonant elements have sub-wavelength dimensions for application in microwave medical imaging systems for detecting tumors in biological tissues. The proposed antenna consists of square-shaped concentric-rings which are connected to a central patch through a common feedline. The array structure comprises several antennas that are arranged to surround the sample breast model. One antenna at a time in the array is used in transmission-mode while others are in receive-mode. The antenna array operates over 2-12 GHz amply covering the frequency range of existing microwave imaging systems. Measured results show that compared to a standard patch antenna array the proposed array with identical dimensions exhibits an average radiation gain and efficiency improvement of 4.8 dBi and 18%, respectively. The average refiection-coefficient of the array over its operating range is better than S11 = -20 dB making it highly receptive to weak signals and minimizing the distortion encountered with the transmission of short duration pulse-trains. Moreover, the proposed antenna-array exhibits high-isolation on average of 30dB between radiators. This means that antennas in the array (i) can be closely spaced to accommodate more radiators to achieve higher-resolution imaging scans, and (ii) the imagining scans can be done over a wider frequency range to ascertain better contrast in electrical parameters between malignant tumor-tissue and the surrounding normal breast-tissue to facilitate the detection of breast-tumor. It is found that short wavelength gives better resolution. In this experimental study a standard biomedical breast model that mimics a real-human breast in terms of dielectric and optical properties was used to demonstrate the viability of the proposed antenna over a standard patch antenna in the detection and the localization of tumor. These results are encouraging for clinical trials and further refinement of the antenna-array.
  • PublicationOpen Access
    Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays
    (MDPI, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Abd-Alhameed, Raed; Khalily, Mohsen; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a new approach to suppress interference between neighbouring radiating elements resulting from surface wave currents. The proposed technique will enable the realization of low-profile implementation of highly dense antenna configuration necessary in SAR and MIMO communication systems. Unlike other conventional techniques of mutual coupling suppression where a decoupling slab is located between the radiating antennas the proposed technique is simpler and only requires embedding linear slots near the periphery of the patch. Attributes of this technique are (i) significant improvement in the maximum isolation between the adjacent antennas by 26.7 dB in X-band and >15 dB in Ku and K-bands; (ii) reduction in edge-to-edge gap between antennas to 10 mm (0.37 ); and (iii) improvement in gain by >40% over certain angular directions, which varies between 4.5 dBi and 8.2 dBi. The proposed technique is simple to implement at low cost.
  • PublicationOpen Access
    Silicon-based 0.450-0.475 THz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits
    (IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.
  • PublicationOpen Access
    High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications
    (Nature Research, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Salekzamankhani, Shahram; Aïssa, Sonia; See, Chan H.; Soin, Navneet; Fishlock, Sam J.; Althuwayb, Ayman Abdulhadi; Abd-Alhameed, Raed; Huynen, Isabelle; McLaughlin, James A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2x3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 mu m for operation across 0.19-0.20 THz. The dimensions of the array were 20x13.5x0.125 mm(3). Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.
  • PublicationOpen Access
    Optimum power transfer in RF front end systems using adaptive impedance matching technique
    (Nature Research, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Althuwayb, Ayman Abdulhadi; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Matching the antenna’s impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna’s radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.
  • PublicationOpen Access
    A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead for MIMO systems
    (IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a new method is proposed to reduce mutual coupling between waveguide slot array (WSA) antennas based on metasurface technology. This is achieved by placing a metasurface bulkhead between the two WSA antennas. Performance of the dual-waveguide antenna structure is shown to substantially enhance when compared against an identical reference WSA antenna with no metasurface. WSA antennas used in the study has dimensions 40×20×5mm 3 and operates over 1.7-3.66 GHz, which corresponds to a fractional bandwidth of 73.13%. The average isolation of the reference WSA antennas is -20 dB; however, with a metasurface bulkhead the isolation is shown to increase to -36.5 dB. In addition, the bandwidth extends by ~10%, and the gain improves by 14.66%. The proposed method is should find application in MIMO systems where high isolation between neighbouring radiation elements is required to improve the antenna characteristics, and mimimise array phase errors, which is necessary to enhance the system performance.
  • PublicationOpen Access
    Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Wang, Yan; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; See, Chan H.; Elfergani, Issa; Zebiri, Chemseddine; Abd-Alhameed, Raed; Huynen, Isabelle; Rodriguez, Jonathan; Denidni, Tayeb A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF Wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
  • PublicationOpen Access
    Wideband printed monopole antenna for application in wireless communication systems
    (IET, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Empirical results of an electrically small printed monopole antenna are described with a fractional bandwidth of 185% (115 MHz to 2.90 GHz) for return-loss better than 10 dB, peak gain and radiation efficiency at 1.45 GHz of 2.35 dBi and 78.8%, respectively. The antenna geometry can be approximated to a back-to-back triangular shaped patch structure that is excited through a common feed-line with a meander-line T-shape divider. The truncated ground-plane includes a central stub located underneath the feed-line. The impedance bandwidth of the antenna is enhanced with the inclusion of meander-line slots in the patch and four double split-ring resonators on the underside of the radiating patches. The antenna radiates approximately omni-directionally to provide coverage over a large part of very high frequency, the whole of ultrahigh frequency, the whole of L-band and some parts of S-band. The antenna has dimensions of 48.32 × 43.72 × 0.8 mm 3 , which is corresponding to the electrical size of 0.235 λ 0 × 0.211 λ 0 × 0.003 λ 0 , where λ 0 is the free-space wavelength at 1.45 GHz. The proposed low-profile low-cost antenna is suitable for application in wideband wireless communications systems.
  • PublicationOpen Access
    New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: study, investigation, and principle
    (IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work it is demonstrated that substrate integrated waveguide longitudinal slotted array antenna (SIWLSAA) which is loaded with metal fences exhibits high-isolation across VHF/UHF bands. A reference SIWLSAA used for comparison purpose comprises of 3×6 slotted arrays constructed on the top and bottom sides of the FR-4 lossy substrate has maximum isolation of -63 dB between its radiation slots. Improvement in isolation is demonstrated using a simple new technique based on inserting a metal fence between each row of slot arrays. The resulting isolation is shown to be is better than -83 dB across 200 MHz to 1.0 GHz with gain greater than 1.5 dBi, and side-lobe level less than - 40 dB. The proposed SIWLSAA is compact and has dimensions of 40×10×5 mm 3 (0.026?×0.006?×0.0020) where ? is 200 MHz. The proposed structure should find application in multiple-input multiple-output (MIMO) and radar systems.
  • PublicationOpen Access
    Double-port slotted-antenna with multiple miniaturized radiators for wideband wireless communication systems and portable devices
    (Electromagnetics Academy, 2019) Alibakhshikenari, Mohammad; Khalily, Mohsen; Virdee, Bal S.; Ali, Abdul; Shukla, Panchamkumar; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Proof-of-concept is presented of a novel slot antenna structure with two excitation ports. Although this antenna provides a wide impedance bandwidth, its peak gain and optimum radiation efficiency are observed at its mid-band operational frequency. The antenna structure is etched on the top side of a dielectric substrate with a ground plane. The antenna essentially consists of a rectangular patch with two dielectric slots in which multiple coupled patch arms embedded with H-shaped slits are loaded. The two dielectric slots are isolated from each other with a large H-shaped slit. The radiation characteristics of the proposed antenna in terms of impedance bandwidth, gain and efficiency can be significantly improved by simply increasing the number of radiation arms and modifying their dimensions. The antenna’s performance was verified by building and testing three prototype antennas. The final optimized antenna exhibits a fractional bandwidth of 171% (0.5–6.4 GHz) with a peak gain and maximum radiation efficiency of 5.3 dBi and 75% at 4.4 GHz, respectively. The antenna has physical dimensions of 27×37×1.6 mm3 corresponding to electrical size of 0.0452λ0 ×0.0627λ0 ×0.0026λ0,where λ0 is freespace wavelength at 0.5 GHz. The antenna is compatible for integration in handsets and other broadband wireless systems that operate over L-, S-, and C-bands.