Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
64 results
Search Results
Now showing 1 - 10 of 64
Publication Embargo A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K- Bands for radar and MIMO systems(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Limiti, Ernesto; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper a novel technique is proposed to reduce the mutual coupling between the radiating elements of a waveguide slot array antenna. This is achieved by inserting slots between the waveguide oval shaped slots. The reference waveguide array antenna used in the study was implemented with an arrangement of 3×5 oval shaped slots. By incorporating linear slots between the radiating oval shaped slots in both horizontal and vertical directions significant reduction in mutual coupling is achieved of 24 dB, 20 dB, and 32 dB in the frequency bands of 12.95-13.75 GHz (Ku-band), 15.45-16.85 GHz (Ku-band), and 18.85-23.0 GHz (K-band), respectively. Edge-to-edge distance between the slot radiators is 0.2λ, which is at least twofold smaller than conventional array antennas. With the slot isolators the antenna's minimum and maximum gains improve by 53.5% and 25.5%, respectively. In addition, the radiation patterns are unaffected. The proposed method is simple to implement, low cost solution mass production. © 2018 European Microwave Association.Publication Open Access Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures(Institution of Engineering and Technology, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Ali, Abdul; Hussein Ali, Ammar; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA decoupling metamaterial (MTM) configuration based on fractal electromagnetic-bandgap (EMBG) structure is shown to significantly enhance isolation between transmitting and receiving antenna elements in a closely-packed patch antenna array. The MTM-EMBG structure is cross-shaped assembly with fractal-shaped slots etched in each arm of the cross. The fractals are composed of four interconnected-'Y-shaped' slots that are separated with an inverted-'T-shaped' slot. The MTM-EMBG structure is placed between the individual patch antennas in a 2 × 2 antenna array. Measured results show the average inter-element isolation improvement in the frequency band of interest is 17, 37 and 17 dB between radiation elements #1 & #2, #1 & #3, and #1 & #4, respectively. With the proposed method there is no need for using metallic-via-holes. The proposed array covers the frequency range of 8-9.25 GHz for X-band applications, which corresponds to a fractional-bandwidth of 14.5%. With the proposed method the edge-to-edge gap between adjacent antenna elements can be reduced to 0.5λ0 with no degradation in the antenna array's radiation gain pattern. Across the array's operating band, the measured gain varies between 4 and 7 dBi, and the radiation efficiency varies from 74.22 and 88.71%. The proposed method is applicable in the implementation of closely-packed patch antenna arrays used in SAR and MIMO systems. © 2018, The Institution of Engineering and Technology.Publication Open Access Analysis of the combinatory effect of uniaxial electrical and magnetic anisotropy on the input impedance and mutual coupling of a printed dipole antenna(IEEE, 2021) Bouknia, Mohamed Lamine; Zebiri, Chemseddine; Sayad, Djamel; Elfergani, Issa; Alibakhshikenari, Mohammad; Rodriguez, Jonathan; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe main objective of this work is to investigate the combinatory effects of both uniaxial magnetic and electrical anisotropies on the input impedance, resonant length and the mutual coupling between two dipoles printed on an anisotropic grounded substrate. Three different configurations: broadside, collinear and echelon are considered for the coupling investigation. The study is based on the numerical solution of the integral equation using the method of moments through the mathematical derivation of the appropriate Green's functions in the spectral domain. In order to validate the computing method and evaluated Matlab calculation code, numerical results are compared with available literature treating particular cases of uniaxial electrical anisotropy; good agreements are observed. New results of dipole structures printed on uniaxial magnetic anisotropic substrates are presented and discussed, with the investigation of the combined electrical and magnetic anisotropies effect on the input impedance and mutual coupling for different geometrical configurations. The combined uniaxial (electric and magnetic) anisotropies provide additional degrees of freedom for the input impedance control and coupling reduction.Publication Open Access Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications(EMW Publishing, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents a novel 2D meta-surface wall to increase the isolation between microstrip patch radiators in an antenna array that is operating in the teraherz (THz) band of 139-141 GHz for applications including communications, medical and security screening systems. The meta-surface unit-cell comprises conjoined twin 'Y-shape' microstrip structures, which are inter-digitally interleaved together to create the meta-surface wall. The proposed meta-surface wall is free of via holes and defected ground-plane hence easing its fabrication. The meta-surface wall is inserted tightly between the radiating elements to reduce surface wave mutual coupling. For best isolation performance the wall is oriented orthogonal to the patch antennas. The antenna array exhibits a gain of 9.0 dBi with high isolation level of less than -63 dB between transmit and receive antennas in the specified THz-band. The proposed technique achieves mutual coupling suppression of more than 10 dB over a much wider frequency bandwidth (2 GHz) than achieved to date. With the proposed technique the edge-to-edge gap between the transmit and receive patch antennas can be reduced to 2.5 mm. Dimensions of the transmit and receive patch antennas are 5×5 mm2 with ground-plane size of 9×4.25 mm2 when being constructed on a conventional lossy substrate with thickness of 1.6 mm.Publication Open Access Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays(MDPI, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Abd-Alhameed, Raed; Khalily, Mohsen; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents a new approach to suppress interference between neighbouring radiating elements resulting from surface wave currents. The proposed technique will enable the realization of low-profile implementation of highly dense antenna configuration necessary in SAR and MIMO communication systems. Unlike other conventional techniques of mutual coupling suppression where a decoupling slab is located between the radiating antennas the proposed technique is simpler and only requires embedding linear slots near the periphery of the patch. Attributes of this technique are (i) significant improvement in the maximum isolation between the adjacent antennas by 26.7 dB in X-band and >15 dB in Ku and K-bands; (ii) reduction in edge-to-edge gap between antennas to 10 mm (0.37 ); and (iii) improvement in gain by >40% over certain angular directions, which varies between 4.5 dBi and 8.2 dBi. The proposed technique is simple to implement at low cost.Publication Open Access Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection(IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Ojaroudi Parchin, Naser; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents a study of a planar antenna-array inspired by the metamaterial concept where the resonant elements have sub-wavelength dimensions for application in microwave medical imaging systems for detecting tumors in biological tissues. The proposed antenna consists of square-shaped concentric-rings which are connected to a central patch through a common feedline. The array structure comprises several antennas that are arranged to surround the sample breast model. One antenna at a time in the array is used in transmission-mode while others are in receive-mode. The antenna array operates over 2-12 GHz amply covering the frequency range of existing microwave imaging systems. Measured results show that compared to a standard patch antenna array the proposed array with identical dimensions exhibits an average radiation gain and efficiency improvement of 4.8 dBi and 18%, respectively. The average refiection-coefficient of the array over its operating range is better than S11 = -20 dB making it highly receptive to weak signals and minimizing the distortion encountered with the transmission of short duration pulse-trains. Moreover, the proposed antenna-array exhibits high-isolation on average of 30dB between radiators. This means that antennas in the array (i) can be closely spaced to accommodate more radiators to achieve higher-resolution imaging scans, and (ii) the imagining scans can be done over a wider frequency range to ascertain better contrast in electrical parameters between malignant tumor-tissue and the surrounding normal breast-tissue to facilitate the detection of breast-tumor. It is found that short wavelength gives better resolution. In this experimental study a standard biomedical breast model that mimics a real-human breast in terms of dielectric and optical properties was used to demonstrate the viability of the proposed antenna over a standard patch antenna in the detection and the localization of tumor. These results are encouraging for clinical trials and further refinement of the antenna-array.Publication Open Access Electronically reconfigurable and conformal triband antenna for wireless communications systems and portable devices(Public Library of Science, 2022) Hussain, Musa; Ali, Esraa Mousa; Awan, Wahaj Abbas; Hussain, Niamat; Alibakhshikenari, Mohammad; Virdee, Bal S.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents the design of a triband antenna that can be electronically configured to operate at different frequencies. The proposed antenna is design to operate at sub-6GHz bands at 2.45 GHz (ISM, Wi-Fi, and WLAN), 3.3, 3.5 & 3.9 GHz (WiMAX), and 4.1 & 4.9 GHz (4G & 5G). This is achieved by connecting two open-ended stubs to a modified triangular patch radiator using PIN diodes. The antenna’s performance was optimized using a 3D electromagnetic solver and its performance was verified through measurements. Moreover, the conformal analysis done on the antenna shows that the proposed technique can be used in moderately flexible wireless devices without compromising the antenna’s gain, radiation efficiency and radiation patterns. These characteristics makes the proposed antenna applicable for various wireless communication systems and devices.Publication Open Access A comprehensive survey of 'metamaterial transmission-line based antennas: design, challenges, and applications'(IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (< 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called 'metamaterials'. These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems.Publication Open Access A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead for MIMO systems(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a new method is proposed to reduce mutual coupling between waveguide slot array (WSA) antennas based on metasurface technology. This is achieved by placing a metasurface bulkhead between the two WSA antennas. Performance of the dual-waveguide antenna structure is shown to substantially enhance when compared against an identical reference WSA antenna with no metasurface. WSA antennas used in the study has dimensions 40×20×5mm 3 and operates over 1.7-3.66 GHz, which corresponds to a fractional bandwidth of 73.13%. The average isolation of the reference WSA antennas is -20 dB; however, with a metasurface bulkhead the isolation is shown to increase to -36.5 dB. In addition, the bandwidth extends by ~10%, and the gain improves by 14.66%. The proposed method is should find application in MIMO systems where high isolation between neighbouring radiation elements is required to improve the antenna characteristics, and mimimise array phase errors, which is necessary to enhance the system performance.Publication Open Access Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer(Nature Research, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Shukla, Panchamkumar; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 × 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6 × 8.6 × 0.0503 mm3. The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits.