Falcone Lanas, Francisco
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Falcone Lanas
First Name
Francisco
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications(EMW Publishing, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents a novel 2D meta-surface wall to increase the isolation between microstrip patch radiators in an antenna array that is operating in the teraherz (THz) band of 139-141 GHz for applications including communications, medical and security screening systems. The meta-surface unit-cell comprises conjoined twin 'Y-shape' microstrip structures, which are inter-digitally interleaved together to create the meta-surface wall. The proposed meta-surface wall is free of via holes and defected ground-plane hence easing its fabrication. The meta-surface wall is inserted tightly between the radiating elements to reduce surface wave mutual coupling. For best isolation performance the wall is oriented orthogonal to the patch antennas. The antenna array exhibits a gain of 9.0 dBi with high isolation level of less than -63 dB between transmit and receive antennas in the specified THz-band. The proposed technique achieves mutual coupling suppression of more than 10 dB over a much wider frequency bandwidth (2 GHz) than achieved to date. With the proposed technique the edge-to-edge gap between the transmit and receive patch antennas can be reduced to 2.5 mm. Dimensions of the transmit and receive patch antennas are 5×5 mm2 with ground-plane size of 9×4.25 mm2 when being constructed on a conventional lossy substrate with thickness of 1.6 mm.Publication Open Access Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars(Wiley, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; See, Chan H.; Abd-Alhameed, Raed; Khalily, Mohsen; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe paper presents a technique to enhance the isolation between adjacent radiating elements that is common in densely packed antenna arrays. Such antennas provide frequency beam-scanning capability needed in multiple-input multiple-output (MIMO) systems and synthetic aperture radars. The method proposed here uses a metamaterial decoupling slab (MTM-DS), which is located between radiating elements, to suppress mutual coupling between the elements that would otherwise degrade the antenna efficiency and performance in both the transmit and receive mode. The proposed MTM-DS consists of mirror imaged E-shaped slits engraved on a microstrip patch with inductive stub. Measured results confirm over 9–11 GHz with no MTM-DS the average isolation (S12) is −27 dB; however, with MTM-DS the average isolation improves to −38 dB. With this technique the separation between the radiating element can be reduced to 0.66λ0, where λ0 is free space wavelength at 10 GHz. In addition, with this technique there is 15% improvement in operating bandwidth. At frequencies of high impedance match of 9.95 and 10.63 GHz the gain is 4.52 and 5.40 dBi, respectively. Furthermore, the technique eliminates poor front-to-back ratio encountered in other decoupling methods. MTM-DS is also relatively simple to implement. Assuming adequate space is available between adjacent radiators the MTM-DS can be fixed retrospectively on existing antenna arrays, which makes the proposed method versatile. ©2018. American Geophysical Union. All Rights Reserved.Publication Open Access High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30° frequency beam-scanning capability at millimetre-waves(MDPI, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe paper presents a feasibility study on the design of a new metamaterial leaky-wave antenna (MTM-LWA) used in the construction of a 1 × 2 array which is implemented using substrate-integrated waveguide (SIW) technology for millimetre-wave beamforming applications. The proposed 1 × 2 array antenna consists of two LWAs with metamaterial unit-cells etched on the top surface of the SIW. The metamaterial unit-cell, which is an E-shaped transverse slot, causes leakage loss and interrupts current flow over SIW to enhance the array’s performance. The dimensions of the LWA are 40 × 10 × 0.75 mm3. Mutual-coupling between the array elements is suppressed by incorporating a metamaterial shield (MTM-shield) between the two antennas in the array. The LWA operates over a frequency range of 55–65 GHz, which is corresponding to 16.66% fractional bandwidth. The array is shown to exhibit beam-scanning of ±30° over its operating frequency range. Radiation gain in the backward (−30°), broadside (0°), and forward (+30°) directions are 8.5 dBi, 10.1 dBi, and 9.5 dBi, respectively. The decoupling slab is shown to have minimal effect on the array’s performance in terms of impedance bandwidth and radiation specifications. The MTM-shield is shown to suppress the mutual coupling by ~25 dB and to improve the radiation gain and efficiency by ~1 dBi and ~13% on average, respectively.