Publication: Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars
Consultable a partir de
Date
Authors
Director
Publisher
Abstract
The paper presents a technique to enhance the isolation between adjacent radiating elements that is common in densely packed antenna arrays. Such antennas provide frequency beam-scanning capability needed in multiple-input multiple-output (MIMO) systems and synthetic aperture radars. The method proposed here uses a metamaterial decoupling slab (MTM-DS), which is located between radiating elements, to suppress mutual coupling between the elements that would otherwise degrade the antenna efficiency and performance in both the transmit and receive mode. The proposed MTM-DS consists of mirror imaged E-shaped slits engraved on a microstrip patch with inductive stub. Measured results confirm over 9–11 GHz with no MTM-DS the average isolation (S12) is −27 dB; however, with MTM-DS the average isolation improves to −38 dB. With this technique the separation between the radiating element can be reduced to 0.66λ0, where λ0 is free space wavelength at 10 GHz. In addition, with this technique there is 15% improvement in operating bandwidth. At frequencies of high impedance match of 9.95 and 10.63 GHz the gain is 4.52 and 5.40 dBi, respectively. Furthermore, the technique eliminates poor front-to-back ratio encountered in other decoupling methods. MTM-DS is also relatively simple to implement. Assuming adequate space is available between adjacent radiators the MTM-DS can be fixed retrospectively on existing antenna arrays, which makes the proposed method versatile. ©2018. American Geophysical Union. All Rights Reserved.
Keywords
Department
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
©2018. American Geophysical Union. All Rights Reserved.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.