Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    High-performance 50μm silicon-based on-chip antenna with high port-to-port isolation implemented by metamaterial and SIW concepts for THz integrated systems
    (IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A novel 50μm Silicon-based on-chip antenna is presented that combines metamaterial (MTM) and substrate integrated waveguide (SIW) technologies for integration in THz circuits operating from 0.28 to 0.30 THz. The antenna structure comprises a square patch antenna implemented on a Silicon substrate with a ground-plane. Embedded diagonally in the patch are two T-shaped slots and the edges of the patch is short-circuited to the ground-plane with metal vias, which convert the structure into a substrate integrated waveguide. This structure reduces loss resulting from surface waves and Silicon dielectric substrate. The modes in the structure can be excited through two coaxial ports connected to the patch from the underside of the Silicon substrate. The proposed antenna structure is essentially transformed to exhibit metamaterial properties by realizing two T-shaped slots, which enlarges the effective aperture area of the miniature antenna and significantly enhances its impedance bandwidth and radiation characteristics between 0.28 THz to 0.3 THz. It has an average gain and efficiency of 4.5dBi and 65%, respectively. In addition, it is a self-isolated structure with high isolation of better than 30dB between the two ports. The on-chip antenna has dimensions of 800x800x60μm3
  • PublicationOpen Access
    A novel 0.3-0.31 THz GaAs-based transceiver with on-chip slotted metamaterial antenna based on SIW technology
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel on-chip antenna with fully integrated 0.3-0.31 THz transceiver is implemented on 0.5μm GaAs substrate, and comprises a voltage-controlled oscillator (VCO), a buffer amplifier, a modulator stage, a power-amplifier, a frequency-tripler, and an on-chip antenna. The proposed on-chip antenna design is based on metamaterial (MTM) slots and substrate integrated waveguide (SIW) technologies. The SIW antenna operates as a high-pass filter and an on-chip radiator to suppress the unwanted harmonics and radiate the desired signal, respectively. Dimensions of the on-chip antenna are 2×1×0.0006 mm3. The proposed on-chip antenna has an average radiation gain and efficiency of >1.0 dBi and 55%, respectively. The transceiver provides an average output power of-15 dBm over 0.3-0.31 THz, which is suitable for near-field active imaging applications at terahertz region.
  • PublicationOpen Access
    Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Ojaroudi Parchin, Naser; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents a study of a planar antenna-array inspired by the metamaterial concept where the resonant elements have sub-wavelength dimensions for application in microwave medical imaging systems for detecting tumors in biological tissues. The proposed antenna consists of square-shaped concentric-rings which are connected to a central patch through a common feedline. The array structure comprises several antennas that are arranged to surround the sample breast model. One antenna at a time in the array is used in transmission-mode while others are in receive-mode. The antenna array operates over 2-12 GHz amply covering the frequency range of existing microwave imaging systems. Measured results show that compared to a standard patch antenna array the proposed array with identical dimensions exhibits an average radiation gain and efficiency improvement of 4.8 dBi and 18%, respectively. The average refiection-coefficient of the array over its operating range is better than S11 = -20 dB making it highly receptive to weak signals and minimizing the distortion encountered with the transmission of short duration pulse-trains. Moreover, the proposed antenna-array exhibits high-isolation on average of 30dB between radiators. This means that antennas in the array (i) can be closely spaced to accommodate more radiators to achieve higher-resolution imaging scans, and (ii) the imagining scans can be done over a wider frequency range to ascertain better contrast in electrical parameters between malignant tumor-tissue and the surrounding normal breast-tissue to facilitate the detection of breast-tumor. It is found that short wavelength gives better resolution. In this experimental study a standard biomedical breast model that mimics a real-human breast in terms of dielectric and optical properties was used to demonstrate the viability of the proposed antenna over a standard patch antenna in the detection and the localization of tumor. These results are encouraging for clinical trials and further refinement of the antenna-array.
  • PublicationOpen Access
    Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Wang, Yan; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; See, Chan H.; Elfergani, Issa; Zebiri, Chemseddine; Abd-Alhameed, Raed; Huynen, Isabelle; Rodriguez, Jonathan; Denidni, Tayeb A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF Wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
  • PublicationOpen Access
    Mutual-coupling reduction in metamaterial substrate integrated waveguide slotted antenna arrays using metal fence isolators for SAR and MIMO applications
    (IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A new type of mutual coupling reduction technique is applied to metamaterial substrate integrated waveguide (SIW) slotted antenna array. The circular shaped reference SIW antenna array is constructed from Alumina substrate with dimensions of 40×5×1.5 mm3. Embedded in the reference antenna are 38 slots with dimensions of 2×1×1.5mm3. The reference SIW antenna operates over X-to Ku-bands with average isolation between the radiation slots of approximately-10Db. Isolation was increased by inserting metal fence isolators (MFIs) between the radiation slots, which increased the isolation by an average of 13dB. In addition, the antenna's impedance matching bandwidth is improved with no degradation in the radiation patterns. With MFIs the maximum gain achieved improves by ~10%. The technique is simple to implement and proposed for synthetic aperture radar (SAR) and multiple input multiple output (MIMO) applications.