Falcone Lanas, Francisco

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Falcone Lanas

First Name

Francisco

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer
    (Nature Research, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Shukla, Panchamkumar; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 × 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6 × 8.6 × 0.0503 mm3. The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits.
  • PublicationOpen Access
    An antenna array utilizing slotted conductive slab: inspired by metasurface and defected ground plane techniques for flexible electronics and sensors operating in the millimeter-wave and terahertz spectrum
    (Springer, 2023) Ali, Esraa Mousa; Alibakhshikenari, Mohammad; Virdee, Bal S.; Kouhalvandi, Lida; Livreri, Patrizia; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper describes an innovative design of an antenna array that is metamaterial inspired using sub-wavelength slots and defected ground structure (DGS) for operation over millimeter-wave and terahertz (THz) spectrum. The proposed antenna array consists of a 2 × 4 array of conductive boxes on which are implemented rectangular slots. The presence of dielectric slots introduces resonant modes within the structure. These resonant modes result in enhancing the electromagnetic fields within the slots, which radiate energy into free space. The resonant frequencies and radiation patterns depend on the specific geometry of the slots and the dielectric properties. The antenna array is excited through a single microstrip line. The radiating elements in the array are interconnected to each other with a microstrip line. Unwanted mutual coupling between the radiating elements can degrade the performance of the antenna. This was mitigated by defecting the ground plane with rectangular slots. It is shown that this technique can enhance the array¿s reflection coefficient over a wider bandwidth. The array was constructed on polyimide substrate having dielectric constant of 3.5 and thickness of 20 ¿m. The design was modelled, and its performance verified using an industry standard electromagnetic package by CST Studio Suite. The proposed array antenna has dimensions of 20 × 10 mm2 and operates between 80 and 200 GHz for radiation gain better than 4 dBi and efficiency above 55%. The peak radiation gain and efficiency are 7.5 dBi and 75% at 91 GHz, respectively. The operational frequency range of the array corresponds to a fractional bandwidth of 85.71%.
  • PublicationOpen Access
    Metasurface-based wideband MIMO antenna for 5G millimeter-wave systems
    (IEEE, 2021) Sehrai, Daniyal Ali; Asif, Muhammad; Shah, Wahab Ali; Khan, Jalal; Ullah, Ibrar; Ibrar, Muhammad; Jan, Saeedullah; Alibakhshikenari, Mohammad; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents a metasurface based multiple-input multiple-output (MIMO) antenna with a wideband operation for millimeter-wave 5G communication systems. The antenna system consists of four elements placed with a 90 degree shift in order to achieve a compact MIMO system while a 2× 2 non-uniform metasurface (total four elements) is placed at the back of the MIMO configuration to improve the radiation characteristics of it. The overall size of the MIMO antenna is 24× 24 mm2 while the operational bandwidth of the proposed antenna system ranges from 23.5-29.4 GHz. The peak gain achieved by the proposed MIMO antenna is almost 7dB which is further improved up to 10.44 dB by employing a 2× 2 metasurface. The total efficiency is also observed more than 80% across the operating band. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL) are analyzed which demonstrate good characteristics. All the simulations of the proposed design are carried out in computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one which make it a potential contender for the upcoming 5G communication systems.
  • PublicationOpen Access
    Overcome the limitations of performance parameters of on-chip antennas based on metasurface and coupled feeding approaches for applications in system-on-chip for THz integrated-circuits
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper proposes a new solution to improve the performance parameters of on-chip antenna designs on standard CMOS silicon (Si.) technology. The proposed method is based on applying the metasurface technique and exciting the radiating elements through coupled feed mechanism. The on-chip antenna is constructed from three layers comprising Si.-GND-Si. layers, so that the ground (GND) plane is sandwiched between two Si. layers. The silicon and ground-plane layers have thicknesses of 20mu m and 5mu m, respectively. The 3×3 array consisting of the asterisk-shaped radiating elements has implemented on the top silicon layer by applying the metasurface approach. Three slot lines in the ground-plane are modelled and located directly under the radiating elements. The radiating elements are excited through the slot-lines using an open-circuited microstrip-line constructed on the bottom silicon layer. The proposed method to excite the structure is based on the coupled feeding mechanism. In addition, by the proposed feeding method the on-chip antenna configuration supresses the substrate losses and surface-waves. The antenna exhibits a large impedance bandwidth of 60GHz from 0.5THz to 0.56THz with an average radiation gain and efficiency of 4.58dBi and 25.37%, respectively. The proposed structure has compact dimensions of 200×200×45μm3. The results shows that, the proposed technique is therefore suitable for on-chip antennas for applications in system-on-chip for terahertz (THz) integrated circuits.
  • PublicationOpen Access
    A hybrid technique for mutual coupling reduction in a compact dual-band millimeter-wave MIMO antenna
    (IEEE, 2025-07-01) Ahmad, Jawad; Hashmi, Mohammad; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This letter reports a hybrid approach employing metallic vias and metasurface for mutual coupling reduction in a MIMO antenna at mmWave frequencies. Initially, a dual-band coaxial-fed antenna, operating at 27 GHz and 28 GHz, is designed using modified K-shaped patch arms with a tapered profile which is then used to develop a four-element dual-band MIMO array. Subsequently, metallic vias are incorporated to suppress surface wave-induced coupling. Finally, metasurface slab is integrated to mitigate near-field interactions. The proposed design achieves an impedance bandwidth of 26.75-27.28 GHz and 27.77-28.19 GHz, with coupling levels below 30 dB, and broadside radiation patterns with respective peak gains of 6.52 dBi and 6.74 dBi. Furthermore, the proposed design exhibits an envelope correlation coefficient (ECC) of less than 0.05 for isotropic and less than 0.25 for Gaussian environments. An excellent agreement between the experimental and simulation results validate the proposed design approach.
  • PublicationOpen Access
    Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications
    (IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Andujar, A.; Anguera, J.; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A metasurface based decoupling structure that is composed of a square-wave slot pattern with exaggerated corners that is implemented on a rectangular microstrip provides high-isolation between adjacent patch antennas for Synthetic Aperture Radar (SAR) and Multi-Input-Multi-Output (MIMO) systems. The proposed 1-2 symmetric array antenna integrated with the proposed decoupling isolation structure is designed to operate at ISM bands of X, Ku, K, and Ka. With the proposed mutual coupling suppression technique (i) the average isolation in the respective ISM bands listed above is 7 dB, 10 dB, 5 dB, and 10 dB; and (ii) edge-to-edge gap between adjacent radiation elements is reduced to 10 mm (0.28λ). The average antenna gain improvement with the metasurface isolator is 2 dBi. © 2018 European Microwave Association.
  • PublicationOpen Access
    High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits
    (Nature Research, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500 μm. The aluminium ground-plane with thickness of 3 μm is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer. The radiation patches comprise concentric metal-rings that are arranged in a 3 × 3 matrix. The antennas are excited by coupling electromagnetic energy through the gaps of the concentric dielectric-rings in the ground-plane using a microstrip feedline created on the bottom polyimide-layer. The open-ended feedline is split in three-branches that are aligned under the radiation elements to couple the maximum energy. In this structure, the concentric metal-rings essentially act as series left-handed capacitances CL that extend the effective aperture area of the antenna without affecting its dimensions, and the concentric dielectric rings etched in the ground-plane act as shunt left-handed inductors LL, which suppress the surface-waves and reduce the substrates losses that leads to improved bandwidth and radiation properties. The overall structure behaves like a metasurface that is shown to exhibit a very large bandwidth of 0.350–0.385 THz with an average radiation gain and efficiency of 8.15dBi and 65.71%, respectively. It has dimensions of 6 × 6 × 1 mm3 that makes it suitable for on-chip implementation.
  • PublicationOpen Access
    Photonic controlled metasurface for intelligent antenna beam steering applications including 6G mobile communication systems
    (Elsevier, 2023) Muqdad, Zainab S.; Alibakhshikenari, Mohammad; Elwi, Taha A.; Hassain, Zaid Abdul; Virdee, Bal S.; Sharma, Richa; Khan, Salahuddin; Türker Tokan, Nurhan; Livreri, Patrizia; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a novel metasurface antenna whose radiation characteristics can be remotely controlled by optical means using PIN photodiodes. The proposed reconfigurable antenna is implemented using a single radiating element to minimize the size and complexity. The antenna is shown to exhibit a large impedance bandwidth and is capable of radiating energy in a specified direction. The proposed antenna consists of a standard rectangular patch on which is embedded an H-tree shaped fractal slot of order 3. The fractal slot is used to effectively reduce the physical size of the patch by 75 % and to enhance its impedance bandwidth. A metasurface layer is strategically placed above the patch radiator with a narrow air gap between the two. The metasurface layer is a lattice pattern of square framed rhombus ring shaped unit-cells that are interconnected by PIN photodiodes. The metasurface layer essentially acts like a superstrate when exposed to RF/microwave radiation. Placed below the patch antenna is a conductive layer that acts like a reflector to enhance the front-toback ratio by blocking radiation from the backside of the patch radiator. The patch’s main beam can be precisely controlled by photonically illuminating the metasurface layer. The antenna’s performance was modelled and analyzed with a commercial 3D electromagnetic solver. The antenna was fabricated on a standard dielectric substrate FR4 and has dimensions of 0.778λo × 0.778λo × 0.25λo mm3 , where λo is the wavelength of free space centered at 1.35 GHz. Measured results confirm the antenna’s performance. The antenna exhibits a wide fractional band of 55.5 % from 0.978 to 1.73 GHz for reflection-coefficient (S11) better than − 10 dB. It has a maximum gain of 9 dBi at 1.35 GHz with a maximum front-to-back ratio (F/B) of 21 dBi. The main beam can be steered in the elevation plane from − 24◦ to +24◦. The advantage of the proposed antenna is it does not require any mechanical movements or complicated electronic systems.
  • PublicationOpen Access
    Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications
    (MDPI, 2021) Althuwayb, Ayman Abdulhadi; Alibakhshikenari, Mohammad; Virdee, Bal S.; Benetatos, Harry; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents the design of a high-performance 0.45-0.50 THz antenna on chip (AoC) for fabrication on a 100-micron GaAs substrate. The antenna is based on metasurface and substrate-integrated waveguide (SIW) technologies. It is constituted from seven stacked layers consisting of copper patch-silicon oxide-feedline-silicon oxide-aluminium-GaAs-copper ground. The top layer consists of a 2 x 4 array of rectangular metallic patches with a row of subwavelength circular slots to transform the array into a metasurface. This essentially enlarges the effective aperture area of the antenna. The antenna is excited using a coplanar waveguide feedline that is sandwiched between the two silicon oxide layers below the patch layer. The proposed antenna structure reduces substrate loss and surface waves. The AoC has dimensions of 0.8 x 0.8 x 0.13 mm(3). The results show that the proposed structure greatly enhances the antenna's gain and radiation efficiency, and this is achieved without compromising its physical size. The antenna exhibits an average gain and efficiency of 6.5 dBi and 65%, respectively, which makes it a promising candidate for emerging terahertz applications.