A hybrid technique for mutual coupling reduction in a compact dual-band millimeter-wave MIMO antenna
Date
Authors
Director
Publisher
Project identifier
Impacto
Abstract
This letter reports a hybrid approach employing metallic vias and metasurface for mutual coupling reduction in a MIMO antenna at mmWave frequencies. Initially, a dual-band coaxial-fed antenna, operating at 27 GHz and 28 GHz, is designed using modified K-shaped patch arms with a tapered profile which is then used to develop a four-element dual-band MIMO array. Subsequently, metallic vias are incorporated to suppress surface wave-induced coupling. Finally, metasurface slab is integrated to mitigate near-field interactions. The proposed design achieves an impedance bandwidth of 26.75-27.28 GHz and 27.77-28.19 GHz, with coupling levels below 30 dB, and broadside radiation patterns with respective peak gains of 6.52 dBi and 6.74 dBi. Furthermore, the proposed design exhibits an envelope correlation coefficient (ECC) of less than 0.05 for isotropic and less than 0.25 for Gaussian environments. An excellent agreement between the experimental and simulation results validate the proposed design approach.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.