Corres Sanz, Jesús María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Corres Sanz
First Name
Jesús María
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
71 results
Search Results
Now showing 1 - 10 of 71
Publication Open Access Single-mode-multimode-single-mode and lossy mode resonance-based devices: a comparative study for sensing applications(Springer-Verlag, 2015) Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Del Villar, Ignacio; Hernáez Sáenz de Zaitigui, Miguel; Socorro Leránoz, Abián Bentor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCPublication Open Access Fiber-optic biosensor based on lossy mode resonances(Elsevier, 2012) Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónPublication Open Access Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures(Elsevier, 2014) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónPublication Open Access Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber(Elsevier, 2012) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónPublication Open Access Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: theoretical and experimental study(Elsevier, 2014) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónPublication Open Access Optical sensors based on lossy-mode resonances(Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCPublication Embargo Experimental study of sensing performance using hyperbolic mode resonances(Elsevier, 2025-01-01) Matías Maestro, Ignacio; Del Villar, Ignacio; Corres Sanz, Jesús María; González Salgueiro, Lázaro José; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSurface plasmon resonance (SPR) and lossy mode resonance (LMR) are prominent sensing mechanisms utilized across various fields. The Kretschmann configuration is commonly employed for SPR, while LMR is favored in planar waveguides or optical fibers due to high incidence angles. Recently, hyperbolic mode resonance (HMR) has emerged as a hybrid approach, combining metallic and dielectric thin films. This study explores the impact of incidence angle on HMR using the Kretschmann configuration. Four samples with varying gold (Au) and tin dioxide (SnO2) layer thicknesses were fabricated and characterized using Atomic Force Microscopy (AFM). Experimental setups employed the Kretschmann configuration for reflectance spectrum analysis. Results indicate enhanced sensitivity and figure of merit (FoM) with an additional SnO2 layer compared to the case without SnO2. Particularly with a 36 nm Au thickness the sensitivity doubles and the FoM improves by 16 %. Numerical simulations validate these findings, confirming the optimized performance of HMR for specific layer thicknesses and incidence angles.Publication Open Access Lossy mode resonances generated in planar configuration for two-parameter sensing(IEEE, 2021-04-29) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThis work shows a new sensor structure for simultaneous measurement of two parameters, temperature and refractive index. The optical configuration consists of incidence of light on the edge of a soda-lime coverslip fully coated with a CuO thin film and partially coated with a PDMS thick layer. This planar configuration permitted to generate two separated lossy mode resonances (LMRs): one centered at 600 nm and the other at 1000 nm. The second resonance is induced by the PDMS layer and it can be used to measure the temperature due to its high thermo-optic coefficient (the sensitivity is -1.75 nm/°C in the temperature range from 20 to 40 °C), whereas the first resonance is used for sensing refractive index with sensitivity of 1460 nm/RIU in the refractive index range from 1.3328 and 1.37. Finally, a calibration test was carried out using a calibrated oil series with refractive index ranging from 1.33 to 1.36. This work demonstrates the possibility of generating multiples resonances in a single structure as simple as a coverslip, which can be used as a multi-parameter interchangeable sensor, especially suitable for biological applications or the detection of heavy metals in water.Publication Embargo Extraordinary sensitivity with quasi-lossy mode resonance mode transition bands in long period fiber gratings(Elsevier, 2025-01-16) González Salgueiro, Lázaro José; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study presents a novel sensor design utilizing a long-period fiber grating (LPFG) deposited with a TiO2 nanocoating via atomic layer deposition. The study combines theoretical simulations and experimental validation to optimize the grating period and modulation index to operate in the mode transition with a quasi-lossy mode resonance (LMR) behavior, i.e., the LPFG attenuation bands shift similarly to LMRs. This enables the achievement of a remarkable sensitivity of 78 nm/nm, allowing for the detection of sub-angstrom variations in film thickness, which is critical for applications in semiconductor manufacturing. Our setup facilitates continuous monitoring of the transmission spectrum, enabling real-time adjustments during deposition to maximize sensitivity. As proof of concept for the applicability of the sensor as a refractive index sensor, we demonstrated exceptional sensitivity for nitrogen detection, achieving around 10,000 nm/RIU, with a figure of merit of 200. This marks one the highest sensitivities reported for optical fiber gas sensors and suggests this technology could revolutionize the field duet to its simplicity in terms of sensor design.Publication Open Access Planar-waveguide-lmr-based sensors: engineering the depth of characteristic curves(IEEE, 2023) Shrivastav, Anand M.; Del Villar, Ignacio; Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenLossy mode resonance (LMR)-based sensors have been proven as one of the exponentially growing research fields since the last decade. These sensors have demonstrated their capabilities in the detection of several physical, chemical, and biological entities, such as refractive index, humidity, gases, enzymes, etc. Conventionally, LMR-based sensors are developed using optical fiber as the sensing platform, but to increase the broad range of applications and better tenability, planar waveguide substrates for LMR realization have been introduced in the last few years. This provides a greater degree of freedom for the sensor design such as tunability in substrate thickness, material, and better surface immobilization. The current study focuses on evaluating the effect of substrate thickness on LMR-based optical sensors to achieve higher sensing performance. For experiments, 150-μm-thick glass coverslips are used as the thin planer substrate, which is then coated with a few nanometers thick LMR-supported SnO 2 layer using the dc sputtering method. Furthermore, to monitor the effect of the changing substrate thickness, the width of the glass coverslip is reduced through the chemical etching process using the 40% HF solution, and simultaneously, the changes in LMR spectra are analyzed. The study shows that the depth of LMR curves strongly depend on the thickness of the waveguide providing LMRs with lower substrate thickness possesses higher depth. Greater depth in LMR curves is a crucial factor in identifying the minimum transmission wavelength of resonance, making it easier to track and detect the targeted parameter. This characteristic greatly enhances the applicability of LMR-based sensors in industrial applications.