Corres Sanz, Jesús María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Corres Sanz

First Name

Jesús María

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Multichannel refractometer based on lossy mode resonances
    (IEEE, 2022) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work a new multiparameter sensor platform based on lossy mode resonances is presented. The structure consists of a soda-lime optical slab waveguide butt-coupled to multimode optical fibers. A variable thickness thin-film is deposited to generate multiple independent resonances on the same waveguide, which can be monitored using a single spectrometer. In order to show the potentiality of the structure, a broad resonance was selectively narrowed by etching sections of the LMR producer thin film. The spectral width is progressively reduced, allowing to selectively isolate independent resonances, which opens the path for multiple LMR generation in the same spectra in a multiparameter sensing platform. The experimental results were corroborated with a theoretical analysis based on the finite difference method (FDM). As a proof of concept, two refractometers on the same waveguide were fabricated and tested using PDMS cells. This platform can be easily miniaturized in order to integrate multiple sensors at low cost, what can be of interest for the development of multi-analyte biosensors probes. IEEE
  • PublicationOpen Access
    Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point
    (IEEE, 2018) Del Villar, Ignacio; Fuentes Lorenzo, Omar; Chiavaioli, Francesco; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua
    Two phenomena for enhancing the sensitivity of longperiod fiber gratings are combined toward an increase of the sensitivity to strain of this type of devices: the dispersion turning point (DTP) and the cladding diameter reduction by an etching process. The results prove that sensitivities up to 20 pm/με can be attained, which is a ten-fold improvement compared to the previous works. The sensitivity in the grating region, which is subjected to etching, does not depend on the order of the cladding mode responsible for the attenuation bands generated in the transmission spectrum, but on the proximity to the DTP for each mode order. On the other hand, the sensitivity to strain of the global structure, including the region without etching, can be increased for lower order modes in a perceptible way if the length of the etched region is smaller compared to the fiber region under stress. The experimental results are supported with simulations based on coupled-mode theory and on FIMMWAVE, which allows understanding the phenomena involved during the sensing process.
  • PublicationOpen Access
    Wavelength and phase detection based SMS fiber sensors optimized with etching and nanodeposition
    (IEEE, 2016) Cardona-Maya, Yamile; Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Botero-Cadavid, Juan F.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua, 2016/PI008; Gobierno de Navarra / Nafarroako Gobernua, 2016/PC025; Gobierno de Navarra / Nafarroako Gobernua, 2016/PC026
    The development of an optical fiber refractometer by hydrogen fluoride etching and sputtering deposition of a thin-film of indium tin oxide on a single-mode-multimode-single-mode fiber structure has been analyzed with the aim of improving the sensitivity to the changes of the refractive index (RI) of the external medium. The device is sensitive to the RI changes of the surrounding medium, which can be monitored by tracking the spectral changes of an attenuation band or with a fast Fourier transform (FFT) analysis. By using an optical spectrum analyzer combined with a simple FFT measurement technique, the simultaneous real time monitoring is achieved. The results show that the sensitivity depends on the thin-film thickness. A maximum of 1442 nm/RIU (refractive index unit) in the 1.32–1.35RIUrange has been attained. In addition, a theoretical analysis has been performed, where simu lationsmatched with the experimental results. As a practical appli cation of the developed optical fiber structure, a °Brix (°Bx) sensor has been implemented with a sensitivity of 2.13 nm/°Bx and 0.25 rad/°Bx respectively for wavelength and phase shift detection.
  • PublicationOpen Access
    Monitoring the etching process in LPFGs towards development of highly sensitive sensors
    (MDPI, 2017) Del Villar, Ignacio; Cruz, José Luis; Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua: 2016/PI008; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC025; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC026
    In this work, the monitoring of the etching process up to a diameter of 30 µm of two LPFG structures has been compared, one of them had initially 125 µm, whereas the second one had 80 µm. By tracking the wavelength shift of the resonance bands during the etching process it is possible to check the quality of etching process (the 80 µm fibre performs better than de 125 µm fibre), and to stop for a specific cladding mode coupling, which permits to obtain an improved sensitivity compared to the initial structure.