Person:
Corres Sanz, Jesús María

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Corres Sanz

First Name

Jesús María

person.page.departamento

ORCID

0000-0003-1298-5700

person.page.upna

1876

Name

Search Results

Now showing 1 - 10 of 64
  • PublicationOpen Access
    Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode (SMS) fiber structure
    (IEEE, 2017) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Vento, José R.; Socorro Leránoz, Abián Bentor; Gallego Martínez, Elieser Ernesto; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The sensitivity of a liquid level sensor based on a single-mode-multimode-single-mode fiber structure has been increased by hydrofluoric acid etching. The etching process was analyzed and monitored both theoretical and experimentally, which permitted to observe that a sinusoidal spectrum can be obtained for low diameters. As an example, a 2.77 fold sensitivity increase was attained by etching from diameter 125 to 50 μm. Moreover, the sinusoidal shape of the optical spectrum permitted to monitor liquid level changes both in wavelength and phase. The cross sensitivity of the sensor to refractive index and temperature was also studied.
  • PublicationOpen Access
    High sensitivity lossy-mode resonance refractometer using low refractive index PFA planar waveguide
    (Elsevier, 2023) Domínguez Rodríguez, Ismel; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work a new strategy to improve the sensitivity of refractometers based on lossy-mode resonances has been proved. The proximity of the PFA (tetrafluoroethylene-perfluoro polymer) substrate refractive index to that of water has permitted to implement an optical refractometer with a sensitivity of 41,034 nm per refractive index unit (nm/RIU) for refractive indices ranging from 1.3318 to 1.3347. The work is supported with both theoretical and experimental results. This high sensitivity can be used for the development of LMR based chemical sensors and biosensors, where a low limit of detection is required, with the additional advantage of a simple disposable planar configuration.
  • PublicationOpen Access
    Tunable electro-optic wavelength filter based on lossy-guided mode resonances
    (Optical Society of America, 2013) Corres Sanz, Jesús María; Ascorbe Muruzabal, Joaquín; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work an optical fiber tunable filter based on lossy guided-mode resonances (LGMR) is proposed. It consists of a multilayer structure deposited onto the surface of a plastic cladding removed multimode fiber. The first layer is used to generate the LGMR and to work as the first electrode as well; the second one to tune the filter and the outer layer forms the other electrode. The fabricated filter has demonstrated a good sensitivity to the applied voltage showing a change of the LGMR wavelength of 0.4 nm/V. Among other applications, this filter is intended to be used as electro-optic wavelength filter or modulator.
  • PublicationOpen Access
    Asymmetrically and symmetrically coated tapered optical fiber for sensing applications
    (SPIE, 2015) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The deposition of a non-metallic thin-film in a symmetrically coated tapered optical fiber leads to the generation of resonances due to guidance of a mode in the thin-film. At certain conditions, the resonances overlap each other, which can be avoided with an asymmetric coated tapered optical fiber, which permits to obtain resonances for TM and TE polarization separately. Numerical results showing the sensitivity to coating thickness and surrounding medium refractive index are also presented for both polarizations.
  • PublicationOpen Access
    Fluorescent sensors for the detection of heavy metal ions in aqueous media
    (MDPI, 2019) Acha Morrás, Nerea de; Elosúa Aguado, César; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Due to the risks that water contamination implies for human health and environmental protection, monitoring the quality of water is a major concern of the present era. Therefore, in recent years several efforts have been dedicated to the development of fast, sensitive, and selective sensors for the detection of heavy metal ions. In particular, fluorescent sensors have gained in popularity due to their interesting features, such as high specificity, sensitivity, and reversibility. Thus, this review is devoted to the recent advances in fluorescent sensors for the monitoring of these contaminants, and special focus is placed on those devices based on fluorescent aptasensors, quantum dots, and organic dyes.
  • PublicationOpen Access
    Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications
    (Hindawi / Wiley, 2008) Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL) structures fabricated using poly(allylamine hydrochloride) (PAH) and Neutral Red (NR) as cations, and poly(acrylic acid) (PAA) as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA) LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM) are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.
  • PublicationOpen Access
    High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances
    (Elsevier, 2016) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work a high sensitivity optical fiber humidity sensor (OFHS) is presented. The configuration chosen for this purpose is a cladding-etched single mode optical fiber (CE-SMF) coated with a thin film of tin oxide (SnO2). The etching has been made using hydrofluoric acid (HF) and the coating has been fabricated by means of sputtering. Tin oxide was used to build the nano-coating which produces the Lossy Mode Resonance (LMR) and works as sensitive material. Theoretical and experimental results are shown and compared. The device was tested using a climatic chamber in order to obtain the response of the OFHS to relative humidity. Changes greater than 130 nm have been obtained for relative humidity varying from 20% to 90%, which gives a sensitivity of 1.9 nm/%RH.
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.
  • PublicationOpen Access
    SnO2-MOF-Fabry-Pérot humidity optical sensor system based on Fast Fourier transform technique
    (SPIE, 2016) López Aldaba, Aitor; López Torres, Diego; Ascorbe Muruzabal, Joaquín; Rota Rodrigo, Sergio; Elosúa Aguado, César; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.
  • PublicationOpen Access
    A study on the EDM drilling of reaction-bonded silicon carbide using different electrode materials
    (Springer, 2023) Torres Salcedo, Alexia; Luis Pérez, Carmelo; Puertas Arbizu, Ignacio; Corres Sanz, Jesús María; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Today, there is a growing demand for efficient hole manufacturing technology in many industries such as aeronautics, automotive and nuclear, among others. Thus, the present study deals with the machining of through holes on SiSiC advanced ceramic by using Electrical Discharge Machining (EDM) drilling technology. Since recommendations related to the electrode characteristics and settings parameters are found to be scant for the industrial use of EDM drilling of SiSiC ceramics, this research work comes to cover this gap as it presents a complete study focused on the influence on different electrodes under rough and finish machining conditions. In particular, the influence of four electrodes materials (copper, copper-tungsten, graphite and copper infiltrated graphite) and three different electrode diameters ranging from 2 to 4 mm are investigated. In addition, the rotational speed of the electrode is also analysed. From the experimental results, both electrode material and machining regime, seem to be the most relevant factors of all. In the case of 2 mm diameter electrode, material removal rate (MRR) with Cu electrode was, approximately, 4.5 times higher than that obtained with a C electrode. In fact, it was found that copper electrode rotating at 20 rpm combined with high values of discharge energy (I = 2 A; ti = 70 µs) is the most economical option in terms of production cost and production time, as it gives a high MRR of 0.4754 mm3/min and a minimum electrode wear (EW) value of 7.52%. Moreover, slightly higher values of MRR were achieved for CuC electrode compared to those obtained with C electrode, indicating that the addition of Cu in the electrode contributes to a greater removal of material. However, a value of Ra of 0.37 µm could be obtained by setting low current intensity values (I = 0.5 A; ti = 45 µs) combined with C electrodes and with no rotation.