Corres Sanz, Jesús María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Corres Sanz

First Name

Jesús María

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 41
  • PublicationOpen Access
    Dual-cavity fiber fabry-perot interferometer coated with SnO2for relative humidity and temperature sensing
    (IEEE, 2020) Domínguez Flores, Carmen E.; Rodríguez-Quiroz, Osvaldo; Monzón-Hernández, David; Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    An optical fiber tip interferometer for the measurement of relative humidity (RH) and temperature is proposed. The optical fiber structure used, a dual-cavity optical fiber Fabry-Perot interferometer (DFFPI), is simply-to-fabricate, compact, and robust. The reflectance (RDFFPI) of the interferometer is sensitive to the refractive index (RI) and temperature of the external medium. Consequently, when the cross-section of the fiber tip was coated with a SnO 2 thin film, whose RI changes according to the humidity of the surrounding ambient, the measurement of the RH was possible. An increment of the RH produced a decrement of RI of the SnO 2 thin film, then the reflectance of the fiber tip end-face diminished, and this produced a decrement of the visibility of the interference fringes. The analysis of the RDFFPI was carried out in the Fourier domain, using a novel processing method it was possible to establish that the amplitude of two peaks of Fourier spectrum changed at a ratio of 39.49 × 10 -3 %RH -1 in the range of 40 to 90 RH%. On the other hand, the temperature of the humidity chamber was monitored, from 25 to 60 °C at a fixed RH%, by analyzing the phase shift of the interference pattern produced by the changes in the optical path length of the cavities. The good sensitivity, stability, reproducibility, and compactness of the fiber tip RH sensor make this proposal very appealing in a wide range of applications.
  • PublicationOpen Access
    Multichannel refractometer based on lossy mode resonances
    (IEEE, 2022) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work a new multiparameter sensor platform based on lossy mode resonances is presented. The structure consists of a soda-lime optical slab waveguide butt-coupled to multimode optical fibers. A variable thickness thin-film is deposited to generate multiple independent resonances on the same waveguide, which can be monitored using a single spectrometer. In order to show the potentiality of the structure, a broad resonance was selectively narrowed by etching sections of the LMR producer thin film. The spectral width is progressively reduced, allowing to selectively isolate independent resonances, which opens the path for multiple LMR generation in the same spectra in a multiparameter sensing platform. The experimental results were corroborated with a theoretical analysis based on the finite difference method (FDM). As a proof of concept, two refractometers on the same waveguide were fabricated and tested using PDMS cells. This platform can be easily miniaturized in order to integrate multiple sensors at low cost, what can be of interest for the development of multi-analyte biosensors probes. IEEE
  • PublicationOpen Access
    Extraordinary sensitivity with quasi-lossy mode resonance mode transition bands in long period fiber gratings
    (Elsevier, 2025-01-16) González Salgueiro, Lázaro José; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study presents a novel sensor design utilizing a long-period fiber grating (LPFG) deposited with a TiO2 nanocoating via atomic layer deposition. The study combines theoretical simulations and experimental validation to optimize the grating period and modulation index to operate in the mode transition with a quasi-lossy mode resonance (LMR) behavior, i.e., the LPFG attenuation bands shift similarly to LMRs. This enables the achievement of a remarkable sensitivity of 78 nm/nm, allowing for the detection of sub-angstrom variations in film thickness, which is critical for applications in semiconductor manufacturing. Our setup facilitates continuous monitoring of the transmission spectrum, enabling real-time adjustments during deposition to maximize sensitivity. As proof of concept for the applicability of the sensor as a refractive index sensor, we demonstrated exceptional sensitivity for nitrogen detection, achieving around 10,000 nm/RIU, with a figure of merit of 200. This marks one the highest sensitivities reported for optical fiber gas sensors and suggests this technology could revolutionize the field duet to its simplicity in terms of sensor design.
  • PublicationOpen Access
    Metallic-dielectric layer based hyperbolic mode resonances in planar waveguides
    (IEEE, 2024) González Salgueiro, Lázaro José; Del Villar, Ignacio; Corres Sanz, Jesús María; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this research article, we present a comprehensive investigation into the integration of dielectric and metallic layers on optical waveguides, specifically targeting sensing applications. By utilizing a single bilayer of metal and dielectric on a planar waveguide that meets the conditions of a hyperbolic metamaterial, we significantly enhance the visibility of lossy mode resonances generated with a single dielectric layer, in what can be considered as a hyperbolic mode resonance (HMR), without compromising sensitivity. This improvement leads to an enhanced figure of merit and a reduction of the signal-to-noise ratio. Real-time evolution of spectra during the dielectric layer deposition allows us to establish a map of the multiple phenomena involved, such as surface plasmon resonance, lossy mode resonance, and mode transition. Combining these phenomena in a single structure leads to an unprecedented enhancement in sensing capabilities, demonstrating the potential of dielectric-metallic layer integration on optical waveguides for advanced sensing applications. Moreover, the optimized sensing performance offers promising opportunities for on-chip sensing devices and various applications in biomedicine, environmental monitoring, and chemical analysis.
  • PublicationOpen Access
    Humidity sensor based on Bragg gratings developed on the end facet of an optical fiber by sputtering of one single material
    (MDPI, 2017) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.
  • PublicationOpen Access
    Optical sensors based on lossy-mode resonances
    (Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC
  • PublicationOpen Access
    High sensitivity lossy-mode resonance refractometer using low refractive index PFA planar waveguide
    (Elsevier, 2023) Domínguez Rodríguez, Ismel; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work a new strategy to improve the sensitivity of refractometers based on lossy-mode resonances has been proved. The proximity of the PFA (tetrafluoroethylene-perfluoro polymer) substrate refractive index to that of water has permitted to implement an optical refractometer with a sensitivity of 41,034 nm per refractive index unit (nm/RIU) for refractive indices ranging from 1.3318 to 1.3347. The work is supported with both theoretical and experimental results. This high sensitivity can be used for the development of LMR based chemical sensors and biosensors, where a low limit of detection is required, with the additional advantage of a simple disposable planar configuration.
  • PublicationOpen Access
    Fluorescent sensors for the detection of heavy metal ions in aqueous media
    (MDPI, 2019) Acha Morrás, Nerea de; Elosúa Aguado, César; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Due to the risks that water contamination implies for human health and environmental protection, monitoring the quality of water is a major concern of the present era. Therefore, in recent years several efforts have been dedicated to the development of fast, sensitive, and selective sensors for the detection of heavy metal ions. In particular, fluorescent sensors have gained in popularity due to their interesting features, such as high specificity, sensitivity, and reversibility. Thus, this review is devoted to the recent advances in fluorescent sensors for the monitoring of these contaminants, and special focus is placed on those devices based on fluorescent aptasensors, quantum dots, and organic dyes.
  • PublicationOpen Access
    Increasing the sensitivity of an optic level sensor with a wavelength and phase sensitive single-mode multimode single-mode (SMS) fiber structure
    (IEEE, 2017) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Vento Álvarez, José Raúl; Socorro Leránoz, Abián Bentor; Gallego Martínez, Elieser Ernesto; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The sensitivity of a liquid level sensor based on a single-mode-multimode-single-mode fiber structure has been increased by hydrofluoric acid etching. The etching process was analyzed and monitored both theoretical and experimentally, which permitted to observe that a sinusoidal spectrum can be obtained for low diameters. As an example, a 2.77 fold sensitivity increase was attained by etching from diameter 125 to 50 μm. Moreover, the sinusoidal shape of the optical spectrum permitted to monitor liquid level changes both in wavelength and phase. The cross sensitivity of the sensor to refractive index and temperature was also studied.