Corres Sanz, Jesús María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Corres Sanz

First Name

Jesús María

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Etched LPFGs in reflective configuration for sensitivity and attenuation band depth increase
    (IEEE, 2016) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Cruz, José Luis; Rego, Gaspar; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A reflection configuration setup for long-period fiber gratings is presented. It permits to obtain a unique band with attenuation double than that obtained in transmission configuration, which is interesting for applications where this value is reduced (e.g., the mode transition phenomenon). The method is based on the deposition of a silver mirror at the end of the optical fiber, which permits to absorb the power transmitted through cladding modes and to avoid the generation of interferometric bands. The method also solves the requirement of a precise cleave or to polish the end of the grating, a drawback present in other publications. The versatility of the setup has been proved by application of the cladding etching technique until the attenuation band corresponding with the first guided mode in the cladding is visualized in an optical spectrum analyzer. The experimental results are supported by the numerical data obtained with a method based on the exact calculation of core and cladding modes and the utilization of coupled mode theory
  • PublicationOpen Access
    Spectral evolution with incremental nanocoating of long period fiber gratings
    (Optical Society of America, 2006) Del Villar, Ignacio; Corres Sanz, Jesús María; Achaerandio Alvira, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The phenomenon is repeated periodically for specific overlay thickness values with the particularity that the shape of the resonance wavelength shift depends on the thickness of the overlay. The main applications are the design of wide optical filters and multiparameter sensing devices.