Ariz Arnedo, Idoia
No Profile Picture Available
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ariz Arnedo
First Name
Idoia
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
22 results
Search Results
Now showing 1 - 10 of 22
Publication Open Access High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L.(Elsevier, 2010-04-29) Ariz Arnedo, Idoia; Esteban Terradillos, Raquel; García Plazaola, José Ignacio; Becerril, José María; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias; Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPhotosynthesis provides plant metabolism with reduced carbon (C) but is also the main source of oxidative stress in plants. Likewise, high doses of NH4+ as sole N source have been reported to be toxic for most plants, resulting in reduced plant growth and restricting C availability. The combination of high photosynthetic photon flux densities (PPFD) and NH4+ nutrition may provide higher C availability but could also have a detrimental effect on the plants, therefore the objective of this study is to evaluate whether NH4+ induces photo-oxidative stress that is exacerbated under high light conditions. Pea plants (Pisum sativum cv. sugar-snap) were grown hydroponically with NH4+ (0.5, 2.5, 5 and 10 mM) under high (750 μmol photons m−2 s−1) or low PPFD conditions (350 μmol photons m−2 s−1). High PPFD contributes to a higher tolerance to ammonium by pea plants, as it originated higher biomass content due to higher photosynthetic rates. However, a deficit of N (0.5 and 2.5 mM NH4+) under high PPFD conditions caused an antioxidant response, as indicated by increased photoprotective pigment and chloroplastic superoxide dismutase contents. Plants grown with higher doses of N and high PPFD showed less need for photoprotection. An increase in the specific leaf weight (SLW) ratio was observed associated not only with high PPFDs but also with the highest NH4+ dose. Overall, these results demonstrate that, despite the activation of some photoprotective responses at high PPFD, there were no photoinhibitory symptoms and a positive effect on NH4+ toxicity, thus suggesting that the harmful effects of NH4+ are not directly related to the generation of photo-oxidative stress.Publication Open Access Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea(Elsevier, 2011-03-01) Cruchaga Moso, Saioa; Artola Rezola, Ekhiñe; Lasa Larrea, Berta; Ariz Arnedo, Idoia; Irigoyen Iriarte, Ignacio; Morán Juez, José Fernando; Aparicio Tejo, Pedro María; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza EkoizpenaThe application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48 h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species.Publication Open Access Potencialidades del frijol caupí para la resiliencia al cambio climático en sistemas agrícolas locales(2022) Santana-Baños, Yoerlandy; González García, Esther; Ariz Arnedo, Idoia; Carrodeguas Díaz, Sergio; Ciencias; ZientziakLas evidencias científicas sugieren tres usos fundamentales del frijol caupí, con agro-ecológicas y beneficios productivos, sociales y ambientales en los sistemas agrícolas locales; sin embargo, su rendimiento a nivel mundial y en América no experimenta crecimiento en los últimos años. Los resultados obtenidos en Pinar del Río, Cuba, sugieren la posibilidad de emplearlo como alternativa para la producción de grano pero debe fomentarse, desde la ciencia, la innovación y las instituciones y órganos de decisión a nivel local, la cultura de producción y consumo de esta leguminosa para su aprovechamiento en la sostenibilidad agrícola de los agro-ecosistemas.Publication Open Access Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants(BioMed Central, 2011) Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; González Moro, María Begoña; García Olaverri, Carmen; González Murua, Carmen; Martins Loucao, María A.; Aparicio Tejo, Pedro María; Estatistika eta Ikerketa Operatiboa; Estadística e Investigación Operativa; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBackground: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4 + is the major N source, the two forms, NH4 + and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4 + (aq) which drives to a different δ15N. Nine plant species with different NH4 +-sensitivities were cultured hydroponically with NO3 - or NH4 + as the sole N sources, and plant growth and δ15N were determined. Short-term NH4 +/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4 + and NH3. Results: Several NO3 --fed plants were consistently enriched in 15N, whereas plants under NH4 + nutrition were depleted of 15N. It was shown that more sensitive plants to NH4 + toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4 + showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4 + pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions: This article proposes that the negative values of δ15N in NH4 +-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4 +/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4 + may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.Publication Open Access Plant ammonium sensitivity is associated with external pH adaptation, repertoire of nitrogen transporters, and nitrogen requirement(Oxford University Press, 2024-03-11) Rivero Marcos, Mikel; Lasa Larrea, Berta; Neves, Tomé; Zamarreño, Ángel M.; García Mina, José M.; García Olaverri, Carmen; Aparicio Tejo, Pedro María; Cruz, Cristina; Ariz Arnedo, Idoia; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Research in Business and Economics - INARBE; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaModern crops exhibit diverse sensitivities to ammonium as the primary nitrogen source, influenced by environmental factors such as external pH and nutrient availability. Despite its significance, there is currently no systematic classification of plant species based on their ammonium sensitivity. We conducted a meta-analysis of 50 plant species and present a new classification method based on the comparison of fresh biomass obtained under ammonium and nitrate nutrition. The classification uses the natural logarithm of the biomass ratio as the size effect indicator of ammonium sensitivity. This numerical parameter is associated with critical factors for nitrogen demand and form preference, such as Ellenberg indicators and the repertoire of nitrogen transporters for ammonium and nitrate uptake. Finally, a comparative analysis of the developmental and metabolic responses, including hormonal balance, is conducted in two species with divergent ammonium sensitivity values in the classification. Results indicate that nitrate has a key role in counteracting ammonium toxicity in species with a higher abundance of genes encoding NRT2-type proteins and fewer of those encoding the AMT2-type proteins. Additionally, the study demonstrates the reliability of the phytohormone balance and methylglyoxal content as indicators for anticipating ammonium toxicity. This study emphasizes the importance of ecophysiological requirements and the repertoire of nitrogen transporters in understanding plant sensitivity to ammonium, and enhances our knowledge of plant nitrogen nutrition.Publication Open Access High irradiance increases NH4+ tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation(Elsevier, 2011-03-02) Ariz Arnedo, Idoia; Artola Rezola, Ekhiñe; Asensio, Aarón C.; Cruchaga Moso, Saioa; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Institute for Multidisciplinary Research in Applied Biology - IMABThe widespread use of NO3− fertilization has had a major ecological impact. NH4+ nutrition may help to reduce this impact, although high NH4+ concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH4+ influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH4+ in the range 2.5–10 mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH4+ content regulation (probably NH4+ influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH4+ resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH4+ and LI is related to their inability to avoid large-scale accumulation of the NH4+ ion.Publication Open Access A self-induction method to produce high quantities of recombinant functional flavo-leghemoglobin reductase(Elsevier, 2008-01-29) Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Rol, Selene; Ariz Arnedo, Idoia; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaFerric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulated that they reduce Lb3+. The existence of Lb2+ is essential for the nitrogen fixation process that occurs in legume nodules; thus, the isolation of FLbR for the study of this enzyme in the nodule physiology is of interest. However, previous methods for the production of recombinant FLbR are inefficient as yields are too low. We describe the production of a recombinant FLbR-2 from Escherichia coli BL21(DE3) by using an overexpression method based on the self-induction of the recombinant E. coli. This expression system is four times more efficient than the previous overexpression method. The quality of recombinant FLbR-2 (based on spectroscopy, SDS-PAGE, IEF, and native PAGE) is comparable to that of the previous expression system. Also, FLbR-2 is purified near to homogeneity in only few steps (in a time scale, the full process takes 3 days). The purification method involves affinity chromatography using a Ni-nitrilotriacetic acid column. Resulting rFLbR-2 showed an intense yellow color, and spectral characterization of rFLbR-2 indicated that rFLbR-2 contains flavin. Pure rFLbR-2 was incubated with soybean Lba and NADH, and time drive rates showed that rFLbR-2 efficiently reduces Lb3+.Publication Open Access New insights on Arabidopsis thaliana root adaption to ammonium nutrition by the use of a quantitative proteomic approach(MDPI, 2019-02-14) Coleto, Inmaculada; Vega-Mas, Izargi; Glauser, Gaëtan; González Moro, María Begoña; Marino, Daniel; Ariz Arnedo, Idoia; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABNitrogen is an essential element for plant nutrition. Nitrate and ammonium are the two major inorganic nitrogen forms available for plant growth. Plant preference for one or the other form depends on the interplay between plant genetic background and environmental variables. Ammonium-based fertilization has been shown less environmentally harmful compared to nitrate fertilization, because of reducing, among others, nitrate leaching and nitrous oxide emissions. However, ammonium nutrition may become a stressful situation for a wide range of plant species when the ion is present at high concentrations. Although studied for long time, there is still an important lack of knowledge to explain plant tolerance or sensitivity towards ammonium nutrition. In this context, we performed a comparative proteomic study in roots of Arabidopsis thaliana plants grown under exclusive ammonium or nitrate supply. We identified and quantified 68 proteins with differential abundance between both conditions. These proteins revealed new potential important players on root response to ammonium nutrition, such as H+-consuming metabolic pathways to regulate pH homeostasis and specific secondary metabolic pathways like brassinosteroid and glucosinolate biosynthetic pathways.Publication Open Access Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated CO2, temperature and low water availability(Frontiers Media, 2015) Ariz Arnedo, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; García Olaverri, Carmen; Nogués, Salvador; Aparicio Tejo, Pedro María; Aranjuelo Michelena, Iker; Estatistika eta Ikerketa Operatiboa; Natura Ingurunearen Zientziak; Estadística e Investigación Operativa; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.Publication Open Access Mechanisms of ammonium toxicity and the quest for tolerance(Elsevier, 2016) Esteban Terradillos, Raquel; Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaAmmonium sensitivity of plants is a worldwide problem, constraining crop production. Prolonged application of ammonium as the sole nitrogen source may result in physiological and morphological disorders that lead to decreased plant growth and toxicity. The main causes of ammonium toxicity/tolerance described until now include high ammonium assimilation by plants and/or low sensitivity to external pH acidification. The various ammonium transport-related components, especially the non-electrogenic influx of NH3 (related to the depletion of 15N) and the electrogenic influx of NH4+, may contribute to ammonium accumulation, and therefore to NH3 toxicity. However, this accumulation may be influenced by increasing K+ concentration in the root medium. Recently, new insights have been provided by “omics” studies, leading to a suggested involvement of GDP mannose-pyrophosphorylase in the response pathways of NH4+ stress. In this review, we highlight the cross-talk signaling between nitrate, auxins and NO, and the importance of the connection of the plants’ urea cycle to metabolism of polyamines. Overall, the tolerance and amelioration of ammonium toxicity are outlined to improve the yield of ammonium-grown plants. This review identifies future directions of research, focusing on the putative importance of aquaporins in ammonium influx, and on genes involved in ammonium sensitivity and tolerance.
- «
- 1 (current)
- 2
- 3
- »