Vargas González, Augusto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Vargas González
First Name
Augusto
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Human microbiota network: unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease(MDPI, 2021) Martínez, José E.; Vargas González, Augusto; Pérez Sánchez, Tania; Encío Martínez, Ignacio; Cabello Olmo, Miriam; Barajas Vélez, Miguel Ángel; Ciencias de la Salud; Osasun ZientziakThe human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.Publication Open Access Isolation of Lactic Acid Bacteria (LAB) from salmonids for potential use as probiotics: in vitro assays and toxicity assessment of salmo trutta embryonated eggs(MDPI, 2024) Vargas González, Augusto; Barajas Vélez, Miguel Ángel; Pérez Sánchez, Tania; Ciencias de la Salud; Osasun ZientziakThis research investigates the potential of lactic acid bacteria (LAB) from freshwater salmonids as prospective probiotics for application in aquaculture. LAB and pathogenic bacteria were obtained from mucus and tissues of Oncorhynchus mykiss and Salmo trutta from fish farms in northeast Spain that had not used antibiotics for the six months preceding the study. Isolates were identified using Gram staining and sequencing of 16S rRNA and ITS-1. To assess the safety of the LAB, antibiotic susceptibility tests (ASTs) against 23 antimicrobials were performed. In vitro antagonism assays were conducted to evaluate the inhibitory effects of living LAB using the agar diffusion test method and their metabolites using the agar well diffusion method. The assays targeted six specific pathogens: Aeromonas salmonicida subsp. salmonicida, Carnobacterium maltaromaticum, Vagococcus salmoninarum, Yersinia ruckeri, Lactococcus garvieae, and the marine pathogen Vibrio jasicida. Additionally, a toxicity assay was conducted on embryonic eggs of S. trutta. The ASTs on probiotic LAB candidates revealed varied responses to antimicrobials, but no resistance to oxytetracycline or florfenicol, which are two antibiotics commonly used in aquaculture, was detected. The in vitro assays indicate that LAB exhibit antagonistic effects against pathogens, primarily when directly stimulated by their presence. In applications involving embryonic eggs or larvae, certain live strains of LAB were found to have adverse effects, with some isolates resulting in higher mortality rates compared to the control group or other isolates. Furthermore, the potential pathogenicity of certain LAB strains, typically considered safe in salmonids, warrants deeper investigation.