Rodríguez Martínez, Iosu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez Martínez
First Name
Iosu
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Embargo Extremal values-based aggregation functions(Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.Publication Open Access On construction methods of (interval-valued) general grouping functions(Springer, 2022) Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Pinheiro, Jocivania; Santos, Helida; Borges, Eduardo N.; Lucca, Giancarlo; Rodríguez Martínez, Iosu; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRecently, several theoretical and applied studies on grouping functions and overlap functions appeared in the literature, mainly because of their flexibility when comparing them with the popular aggregation operators t-conorms and t-norms, respectively. Additionally, they constitute richer classes of disjunction/conjunction operations than t-norms and t-conorms. In particular, grouping functions have been applied as the disjunction operator in several problems, like decision making based on fuzzy preference relations. In this case, when performing pairwise comparisons, grouping functions allow one to evaluate the measure of the amount of evidence in favor of either of two given alternatives. However, grouping functions are not associative. Then, in order to allow them to be applied in n-dimensional problems, such as the pooling layer of neural networks, some generalizations were introduced, namely, n-dimensional grouping functions and the more flexible general grouping functions, the latter for enlarging the scope of applications. Then, in order to h andle uncertainty on the definition of the membership functions in real-life problems, n-dimensional and general interval-valued grouping functions were proposed. This paper aims at providing new constructions methods of general (interval-valued) grouping functions, also providing some examples.Publication Open Access A new family of aggregation functions for intervals(Springer, 2024) Díaz-Vázquez, Susana; Torres-Manzanera, Emilio; Rico, Noelia; Mesiar, Radko; Rodríguez Martínez, Iosu; Lafuente López, Julio; Díaz, Irene; Montes Rodríguez, Susana; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAggregation operators are unvaluable tools when different pieces of information have to be taken into account with respect to the same object. They allow to obtain a unique outcome when different evaluations are available for the same element/object. In this contribution we assume that the opinions are not given in form of isolated values, but intervals. We depart from two “classical” aggregation functions and define a new operator for aggregating intervals based on the two original operators. We study under what circumstances this new function is well defined and we provide a general characterization for monotonicity. We also study the behaviour of this operator when the departing functions are the most common aggregation operators. We also provide an illustrative example demonstrating the practical application of the theoretical contribution to ensemble deep learning models.