Person: Eceiza, Mikel Vicente
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Eceiza
First Name
Mikel Vicente
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
0000-0002-1684-270X
person.page.upna
811753
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis(Wiley, 2023) Barco Antoñanzas, María; Font Farre, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Van der Hoorn, Reiner; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.Publication Open Access Role of oxidative stress in the physiology of sensitive and resistant Amaranthus palmeri populations treated with herbicides inhibiting acetolactate synthase(Frontiers Media, 2023) Eceiza, Mikel Vicente; Barco Antoñanzas, María; Gil Monreal, Miriam; Huybrechts, Michiel; Zabalza Aznárez, Ana; Cuypers, Ann; Royuela Hernando, Mercedes; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of the present study was to elucidate the role of oxidative stress in the mode of action of acetolactate synthase (ALS) inhibiting herbicides. Two populations of Amaranthus palmeri S. Watson from Spain (sensitive and resistant to nicosulfuron, due to mutated ALS) were grown hydroponically and treated with different rates of the ALS inhibitor nicosulfuron (one time and three times the field recommended rate). Seven days later, various oxidative stress markers were measured in the leaves: H2O2, MDA, ascorbate and glutathione contents, antioxidant enzyme activities and gene expression levels. Under control conditions, most of the analysed parameters were very similar between sensitive and resistant plants, meaning that resistance is not accompanied by a different basal oxidative metabolism. Nicosulfuron-treated sensitive plants died after a few weeks, while the resistant ones survived, independently of the rate. Seven days after herbicide application, the sensitive plants that had received the highest nicosulfuron rate showed an increase in H2O2 content, lipid peroxidation and antioxidant enzymatic activities, while resistant plants did not show these responses, meaning that oxidative stress is linked to ALS inhibition. A supralethal nicosulfuron rate was needed to induce a significant oxidative stress response in the sensitive population, providing evidence that the lethality elicited by ALS inhibitors is not entirely dependent on oxidative stress.Publication Open Access The moderate oxidative stress induced by glyphosate is not detected in Amaranthus palmeri plants overexpressing EPSPS(Elsevier, 2022) Gil Monreal, Miriam; Barco Antoñanzas, María; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Eceiza, Mikel Vicente; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe present study aimed to determine whether glyphosate-induced oxidative stress is directly related to the action mechanism of this herbicide (5-enolpyruvylshikimate-3-phosphate synthase or EPSPS inhibition) and analyse the role of oxidative stress in glyphosate toxicity of the weed Amaranthus palmeri S. Wats. Two kinds of populations were studied using EPSPS amplification: glyphosate-sensitive and glyphosate-resistant (by gene amplification). Plants were grown hydroponically and treated with different glyphosate doses, after which several oxidative stress markers were measured in the leaves. Untreated, sensitive and resistant plants showed similar values for the analysed parameters. Treated glyphosate-sensitive plants showed an increase in shikimate, superoxide and H2O2 contents and dose-dependent lipid peroxidation and antioxidant responses; however, none of these effects were observed in resistant plants, indicating that glyphosate-induced oxidative stress is related to EPSPS inhibition. Oxidative stress is associated with an increase in the activity of peroxidases due to EPSPS inhibition, although the link between both processes remains elusive. The fact that some glyphosate doses were lethal but did not induce major oxidative damage provides evidence that glyphosate toxicity is independent of oxidative stress.Publication Open Access Physiological approach to the use of the natural compound quinate in the control of sensitive and resistant Papaver rhoeas(MDPI, 2020) Zabalza Aznárez, Ana; Zulet González, Ainhoa; Barco Antoñanzas, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Royuela Hernando, Mercedes; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaQuinate (1,3,4,5-tetrahydroxycyclohexanecarboxylate) is a compound synthesized in plants through a side-branch of the shikimate biosynthesis pathway, which is accumulated after glyphosate and acetolactate synthase inhibiting herbicides (ALS-inhibitors) and has phytotoxic potential. The objective of this study was to evaluate the phytotoxicity of quinate on several weed species. Among the species evaluated, Cynodon dactylon, Bromus diandrus, Lolium rigidum, Sinapis alba, and Papaver rhoeas, P. rhoeas was the most sensitive, and its growth was controlled with quinate concentrations above 100 mM at the phenological stage of 6–8 true leaves. A physiological study, including the shikimate pathway and the physiological markers of ALS-inhibitors (carbohydrates and amino acids), was performed in the sensitive and resistant plants treated with sulfonylureas or quinate. The typical physiological effects of ALS-inhibitors were detected in the sensitive population (free amino acid and carbohydrate accumulation) and not detected in the resistant population. The mode of action of quinate appeared to be related to general perturbations in their carbon/nitrogen metabolism rather than to specific changes in the shikimate pathway. These results suggest the possibility of using quinate in the weed control management of P. rhoeas.Publication Open Access Role of glutathione S-transferases in the mode of action of herbicides that inhibit amino acid synthesis in Amaranthus palmeri(Elsevier, 2024) Eceiza, Mikel Vicente; Jiménez Martínez, Clara; Gil Monreal, Miriam; Barco Antoñanzas, María; Font Farre, María; Huybrechts, Michiel; Van der Hoorn, Reiner; Cuypers, Ann; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAcetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.Publication Open Access Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides(Elsevier, 2022) Barco Antoñanzas, María; Gil Monreal, Miriam; Eceiza, Mikel Vicente; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA 2010The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.Publication Embargo Alterations of oxidative status induced by amino acid synthesis-inhibiting herbicides in sensitive and target-site resistantpopulations of Amaranthus palmeri(2023) Eceiza, Mikel Vicente; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, UPNA20-6138Entre los métodos de control de malas hierbas, los herbicidas aparecen como métodos rápidos y efectivos, y conforman el método más utilizado para el control de malas hierbas. Dos de los grupos de herbicidas más importantes son los inhibidores de la 5-enolpiruvilsiquimato-3-fosfatosintasa (EPSPS) y la acetolactato sintasa (ALS). El único inhibidor de la EPSPS que se conoce es el glifosato, el herbicida más utilizado a nivel mundial; mientras, los inhibidores de la ALS incluyen numerosas sustancias activas. La EPSPS y la ALS son enzimas importantes que forman parte de la biosíntesis de aminoácidos aromáticos y aminoácidos ramificados, respectivamente. Cómo el glifosato o los inhibidores de la ALS bloquean estas rutas de biosíntesis de aminoácidos está estudiado a fondo, pero la secuencia de eventos fisiológicos que ocurre entre la aplicación del herbicida y la muerte de la planta no se conoce del todo. Los efectos fisiológicos establecidos hoy en día para ambos grupos de herbicidas son bastante parecidos (a pesar de que las enzimas diana sean diferentes). Algunos estudios muestran que entre estos efectos fisiológicos provocados por el glifosato y los inhibidores de la ALS está el estrés oxidativo, pero su origen (si está ligado a la inhibición de la EPSPS o ALS o es un efecto secundario aparte) y la importancia del daño oxidativo y las alteraciones en los sistemas antioxidantes (como el glutatión) inducidos en la cascada fisiológica que termina con la muerte de la planta no se conocen. En este contexto, el objetivo principal de esta tesis fue evaluar el papel del estrés oxidativo y el metabolismo del glutatión en el modo de acción del glifosato y los inhibidores de la ALS, tratando de elucidar si está relacionado con el mecanismo de acción de ambos grupos de herbicidas. Se crecieron cuatro poblaciones de la mala hierba Amaranthus palmeri S. Wats.: sensible a glifosato (GFS), resistente a glifosato (GFR), sensible a inhibidores de la ALS (AIS) y resistente a inhibidores de la ALS (AIR). En las dos poblaciones resistentes, la resistencia venía dada por mecanismos target-site (TSR). Las poblaciones GFS y GFR fueron tratadas con diferentes dosis de glifosato, mientras que las poblaciones AIS y AIR fueron tratadas con dosis diferentes de nicosulfuron (una sulfonilurea, inhibidor de la ALS). Se realizaron varios análisis fisiológicos y se compararon, en las hojas de estas poblaciones: acumulación de especies reactivas de oxígeno (ROS), daño oxidativo, sistemas antioxidantes (con especial énfasis en el metabolismo del glutatión) y señalización hormonal.Casi no hubo diferencias entre las plantas sensibles y resistentes no tratadas en los parámetros analizados, mostrando que la TSR no viene acompañada por un estado oxidativo basal diferente. Las plantas GFS y AIS tratadas murieron con todas las dosis de glifosato o nicosulfuron; en cambio, todas las plantas resistentes sobrevivieron. Las plantas GFS y AIS tratadas mostraron una producción y acumulación de ROS mayor que las no tratadas, un efecto que no ocurrió en las resistentes. Esta sobreproducción de ROS en las plantas sensibles tratadas provocó una peroxidación lipídica proporcional a la dosis de herbicida, un indicador inequívoco de estrés oxidativo, y cambios en los sistemas antioxidantes. Solo las plantas sensibles de las dos poblaciones mostraron un incremento de la actividad y expresión génica de la glutatión Stransferasa (GST), indicando la implicación del glutatión como antioxidante. La presencia de estrés oxidativo solo en las plantas sensibles tratadas con glifosato o nicosulfuron y su ausencia en las plantas TSR indica que el estrés oxidativo está relacionado con la inhibición de la EPSPS o la ALS, aunque los mecanismos exactos permanecen sin esclarecer. El daño oxidativo se probó como otro efecto común de ambos herbicidas, pero fue demasiado leve para provocar por sí solo la muerte de la planta. Por otra parte, los dos herbicidas alteraron el perfil hormonal, pero indujeron hormonas diferentes. Así, los cambios observados en el perfil hormonal muestran un efecto diferente de la acción herbicida. Los mecanismos que provocan estos cambios hormonales siguen siendo desconocidos, pero la inducción de ciertas hormonas puede estar relacionada con el estrés oxidativo.