Torres Molina, Nazareth

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Torres Molina

First Name

Nazareth

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 27
  • PublicationOpen Access
    Arbuscular mycrorrhizal fungi inoculation and applied water amounts modulate the response of young grapevines to mild water stress in a hyper-arid season
    (Frontiers Media, 2021-01-14) Torres Molina, Nazareth; Yu, Runze; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Several factors may affect the success of a replanting vineyard. Given the current environmental conditions, an optimized irrigation schedule would still be one of the most desirable tools to improve crop productivity and fruit quality. On the other hand, the symbiosis of grapevines with arbuscular mycorrhizal fungi (AMF) is a key component of the vineyard production systems improving the vine growth, nutrient uptake, and berry quality. The aim of this study was to characterize the response of Merlot grapevines to AMF inoculation and two different irrigation amounts in their first productive year. The experiment was conducted on 2-year Merlot grapevines inoculated with AMF (I) or not-inoculated (NI) and subjected to two irrigation amounts, full irrigated (FI), where the amount of water was enough to maintain expansive growth and half irrigated (HI) where plants received the half of the amount of water of FI plants. Water status, gas exchange parameters, growth, mineral content, berry composition, and mycorrhizal colonization were monitored through the season. AMF inoculation improved the grapevine vegetative growth, water status, and photosynthetic activity, especially when vines were subjected to HI irrigation; however, no effect was observed on the leaf mineral content, must pH, total soluble solids, or total acidity. The main effects were observed on the flavonoid composition of berry skins at harvest. Irrigation amounts and mycorrhizal inoculation modified cyanidin and peonidin derivatives whereas flavonol composition was mainly affected by irrigation treatments. A strong relationship between the mycorrhizal colonization rate of roots and total quercetins, cyanidins, and peonidins was found. Findings support the use of a mycorrhizal inoculum and a better water management in a hyper-arid growing season; however, these results may be affected by edaphoclimatic characteristics and living microbiota in vineyard soils, which should be taken into account before making the decision of inoculating the vineyard.
  • PublicationOpen Access
    Mycorrhizal symbiosis affects ABA metabolism during berry ripening in vitis vinifera L. cv. tempranillo grown under climate change scenarios
    (Elsevier, 2018-06-19) Torres Molina, Nazareth; Goicoechea, Nieves; Zamarreño, Ángel M.; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Arbuscular mycorrhizal symbiosis is a promising tool for improving the quality of grapes under changing environments. Therefore, the aim of this research was to determine if the ability of arbuscular mycorrhizal fungi (AMF) to enhance phenolic content (specifically, anthocyanins) in a climate change framework could be mediated by alterations in berry ABA metabolism during ripening. The study was carried out on fruit-bearing cuttings of cv. Tempranillo (CL-1048 and CL-1089) inoculated (+M) or not (-M) with AMF. Two experimental designs were implemented. In the first experiment +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) from fruit set to berry maturity. In the second experiment, +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) combined with two irrigation regimes (late water deficit (LD) and full irrigation (FI)). At 28/18°C AMF contributed to an increase in berry anthocyanins and modulated ABA metabolism, leading to higher ABA-GE and 7'OH-ABA and lower phaseic acid (PA) in berries compared to -M plants. Under the most stressful scenario (LD and 28/18°C), at harvest +M plants exhibited higher berry anthocyanins and 7´OH-ABA and lower PA and dihydrophaseic acid (DPA) levels than -M plants. These findings highlight the involvement of ABA metabolism into the ability of AMF to improve some traits involved in the quality of grapes under global warming scenarios.
  • PublicationOpen Access
    IV Jornadas del Grupo de Viticultura: comunicaciones técnicas Sociedad Española de Ciencias Hortícolas
    (Sociedad Española de Ciencias Hortícolas, 2022) Santesteban García, Gonzaga; Torres Molina, Nazareth; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    La Sociedad Española de Ciencias Hortícolas y la Universidad Pública de Navarra organizaron las IV Jornadas del grupo de Viticultura de la SECH, celebradas en Pamplona/Iruña entre los días 26 y 28 de octubre de 2022. Las Jornadas, promovidas por el Grupo de Trabajo de Viticultura de la SECH, tuvieron como objetivo principal poner en común los trabajos realizados en los últimos años en el ámbito de la viticultura y de la investigación vitícola. Los últimos años, marcados por la crisis provocada por la pandemia del COVID-19, impidieron la realización de las Jornadas del grupo con anterioridad. Estas IV Jornadas se dedicaron a reflexionar sobre la investigación en el sector en los últimos años, su transferencia y su impacto en la sociedad. En este contexto, las Jornadas pretenden ser un encuentro abierto en el que los investigadores, docentes, técnicos, centros de investigación, sectores económicos y productivos expongan sus trabajos de investigación, de desarrollo y de aplicación tecnológica.
  • PublicationOpen Access
    Flavonoid and amino acid profiling on vitis vinifera L. cv tempranillo subjected to deficit irrigation under elevated temperaturas
    (Elsevier, 2017-05-03) Torres Molina, Nazareth; Hilbert, Ghislaine; Luquin, Josu; Goicoechea, Nieves; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Throughout the southern Mediterranean regions of Europe, projected climate warming combined with severe droughts during the growing season may alter grape metabolism, thus modifying the nutritional value of berries and the quality of wines. This study investigated the effects of pre- and post-veraison drought under elevated temperatures on berry skin metabolism of two Tempranillo clones (CL). Experimental assays were performed on fruit-bearing cuttings from CL-1089 and CL-843 of Vitis vinifera (L.) cv. Tempranillo subjected to two temperature regimes (24/14 °C or 28/18 °C (day/night)) combined with three irrigation regimes during berry ripening: (i) water deficit from fruit set to veraison (early deficit, ED); (ii) water deficit from veraison to maturity (late deficit, LD); and (iii) full irrigation (FI). At 24/14 °C, the LD treatment performed better than the ED treatment. Differences were attenuated at 28/18 °C and responses were modulated by type of clone. Elevated temperatures induced the accumulation of hexoses and amino acids in berries. ED at 24/14 °C reduced anthocyanins and flavonols, which may decrease the antioxidant properties of fruits. In contrast, the levels of these secondary metabolites did not decrease when LD was applied. Our results suggest that the adaptation of grapevines for climate change might be plausible with the optimization of timing of water deficit and the appropriate selection of clones.
  • PublicationOpen Access
    Evaluation of the influence of rootstock cane characteristics on grafting success rate
    (International Viticulture and Enology Society (IVES), 2025-03-10) Villa Llop, Ana; Crespo Martínez, Sara; Marín, Diana; Torres Molina, Nazareth; Cookson, Sarah Jane; Loupit, Grégoire; Bonhomme, Pierre-Olivier; Prodhomme, Duyên; Gramaje, David; Bujanda, Rebeca; Eraso Zabalegui, Javier; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    The success of grafting in grapevine nurseries can vary significantly depending on the wood used, even if the same scion and rootstock are used, yet the underlying causes of this variation remain poorly understood. To elucidate the factors influencing grafting success, rootstock wood (Vitis berlandieri x V. rupestris cv. 110 Richter) from ten production fields - each representing different rootstock origins - in Spain and France was characterised and grafted to cv. Tempranillo, and grafting success rates were subsequently determined. Histological analysis of the rootstock canes was carried out to evaluate tissue dimensions (pith, xylem, and phloem), number of xylem vessels, and hydraulic conductivity, revealing significant differences, particularly in the size and presence of large vessels. Metabolite analysis (starch, sucrose, glucose, fructose, and proteins) and isotopic composition (δ 13C and δ 15N) further differentiated the batches. Grafting success rates were recorded after uprooting and showed positive associations with parameters of water status (δ 13C), nitrogen assimilation (δ 15N), and anatomical characteristics of the rootstock canes. These findings underscore the complex interaction of physiological, anatomical, and environmental factors influencing grafting outcomes in grapevines.
  • PublicationOpen Access
    Photoselective shade films mitigate heat wave damage by reducing anthocyanin and flavonol degradation in grapevine (vitis vinifera L.) berries
    (Frontiers Media, 2022) Marigliano, Lauren E.; Yu, Runze; Torres Molina, Nazareth; Tanner, Justin D.; Battany, Mark; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Wine grape production is challenged by forecasted increases in air temperature and droughts due to climate change and photoselective overhead shade films are promising tools in hot viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berries to solar radiation overexposure, optimize shade film use for preserving berry composition. An experiment was conducted for two years with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0). Integrals for leaf gas exchange and mid-day stem water potential were unaffected by the shade films in both years. At harvest, berry primary metabolites were not affected by treatments applied in either year. Despite precipitation exclusion during the dormant seasons in shaded treatments, and cluster zone temperatures reaching 58°C in C0, yield was not affected. Berry skin anthocyanin and flavonol composition and content were measured by C18 reversed-phase HPLC. In 2020, total skin anthocyanins (mg·berry-1) in the shaded treatments were 27% greater than C0 during berry ripening and at harvest. Conversely, flavonol content in 2020 decreased in partially shaded grapevines compared to C0. Berry flavonoid content in 2021 increased until harvest while flavonol degradation was apparent from veraison to harvest in 2020 across partially shaded and control grapevines. Untreated control showed lower di- to tri-hydroxylated flavonol ratios closer to harvest. Our results provided evidence that overhead partial shading of vineyards mitigate anthocyanin degradation by reducing cluster zone temperatures and is a useful tool in combatting climate change in hot climate regions.
  • PublicationEmbargo
    Upgrading and validating a soil water balance model to predict stem water potential in vineyards
    (Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Efficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.
  • PublicationOpen Access
    Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments
    (Frontiers Media, 2018-06-29) Torres Molina, Nazareth; Antolín, M. Carmen; Goicoechea, Nieves; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Climate change and their resulting impacts are becoming a concern for winegrowers due to the high socioeconomic relevance of the winemaking sector worldwide. In fact, the projected climate change is expected to have detrimental impacts on the yield of grapevines, as well as on the quality and properties of grapes and wine. It is well known that arbuscular mycorrhizal fungi (AMF) can improve the nutritional quality of edible parts of crops and play essential roles in the maintenance of host plant fitness under stressed environments, including grapevines. The future scenarios of climate change may also modify the diversity and the growth of AMF in soils as well as the functionality of the mycorrhizal symbiosis. In this review, we summarize recent research progress on the effects of climate change on grapevine metabolism, paying special attention to the secondary compounds involved in the organoleptic properties of grapes and wines and to the levels of the phytohormones implied in the control of berry development and fruit ripening. In this context, the potential role of AMF for maintaining fruit quality in future climate change scenarios is discussed.
  • PublicationOpen Access
    Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo
    (Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Achieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.
  • PublicationOpen Access
    Source-sink manipulation does not mitigate the effects of grapevine red blotch virus (GRBV) infection on fruit sugar and flavonoid accumulation in Cabernet-Sauvignon
    (International Viticulture and Enlogy Society, 2023) Kurtural, Sahap Kaan; Tanner, Justin D.; Mainos, Dimitirios; Yu, Runze; Torres Molina, Nazareth; Martínez-Lüscher, Johann; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Grapevine red blotch virus (GRBV) negatively affects the composition of grapevine (Vitis vinifera L.) berries by reducing total soluble solids and anthocyanins, leading to economic losses for grape producers. Negative effects of GRBV were suspected to be due to impeded carbon translocation from leaves to fruit which limits sugar and flavonoid accumulation in berries. A two-year trial was conducted to determine whether an increase in source: sink ratio may affect sugar allocation and mitigate the effects of GRBV on Cabernet-Sauvignon plants. Experimental design was factorial (2 by 2) with healthy plants that did not have the virus (GRBV (-)) and plants having GRBV (GRBV (+)) and plants were subjected either untreated (UNT) or cluster thinned down to 10 clusters (CT). Effects of cluster thinning and virus status on leaf and shoot total soluble sugars (TSS), plant water status, leaf gas exchange, berry primary and secondary metabolites, and yield components were measured. The TSS in leaves began to accumulate around véraison. In shoot sap, GRBV(-) plants had greater concentration in TSS than GRBV(+) plants. The presence of disease improved plant water status increasing the stem water potential and increasing berry mass. However, juice total soluble solids were consistently lower in GRBV(+) plants despite increasing source: sink ratio by 3× with cluster removal. Likewise, GRBV(+) plants produced berries with lower anthocyanin content at harvest regardless of CT in both years. Our results suggest that GRBV infection severally impeded carbohydrate translocation out of the leaves, and in contrast to healthy plants reducing the number of clusters does not induce a reconcentration of sugars in the remaining clusters.