Person:
Celaya Echarri, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Celaya Echarri

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-7880-8224

person.page.upna

812782

Name

Search Results

Now showing 1 - 10 of 36
  • PublicationOpen Access
    Design and experimental validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus applications
    (MDPI, 2019) Fraga Lamas, Paula; Celaya Echarri, Mikel; López Iturri, Peio; Castedo, Luis; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Suárez Albela, Manuel; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m2), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.
  • PublicationOpen Access
    Spatial MIMO channel characterization under different vehicular distributions
    (IEEE, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Considering the large benefits brought by multipleinput- multiple-output (MIMO) technologies in vehicular communications, the analysis of MIMO channel characteristics using accurate and efficient channel models for these scenarios has become crucial. In this work, an intensive analysis of the MIMO channel characteristics in a mmWave vehicle-to-infrastructure (V2I) communication link with different vehicular distributions is performed. For that purpose, an in-house deterministic simulation channel model with an embedded MIMO channel approach has been developed. Experimental measurements in the same vehicular scenario have been performed to validate the proposed channel simulation technique. Variations in the capacity of the MIMO system have been analyzed in relation to different channel metrics, obtaining that the main contributors are the Signal-to- Noise Ratio (SNR) and the Angular Spread (AS).
  • PublicationOpen Access
    Building decentralized fog computing-based smart parking systems: from deterministic propagation modeling to practical deployment
    (IEEE, 2020) Celaya Echarri, Mikel; Froiz Míguez, Iván; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.
  • PublicationOpen Access
    An enhanced approach to virtually increase quasi-stationarity regions within geometric channel models for vehicular communications
    (IEEE, 2023) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Vehicular communication channels are intrinsically non-stationary, as they present high mobility and abundant dynamic scatterers. Quasi-stationary regions can assess the degree of non-stationarity within a determined scenario and time variant observation of the channel can be extracted. These regions can aid geometrical models as to increase channel sampling intervals or to develop hybrid stochastic-geometric channel models. In this work, a new methodology for the use of virtual quasi-stationary regions within geometric channel models is proposed, in order to leverage the inherent location information to virtually increase their size. Overall, the use of delay-shifted channel responses improves the mean correlation coefficient between consecutive locations, ultimately reducing computation time for time-variant geometric channel models.
  • PublicationOpen Access
    An acceleration approach for channel deterministic approaches based on quasi-stationary regions in V2X communications
    (IEEE, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Vehicular environments are characterized by a high mobility, which alongside with the presence of abundant dynamic scatterers, lead to vehicular communication channels to be intrinsically non-stationary. In this sense, the quasi-stationary regions (QSRs) can assess the degree of non-stationarity within a determined scenario, and ultimately assist geometrical models to increase channel sampling intervals or to develop more efficient hybrid stochastic-geometric channel models. In this work, the channel QSRs in a vehicular communication (V2X) generic highdense urban environment at millimeter wave (mmWave) frequencies (28 GHz) have been analyzed using different approaches, such as the extended channel response into a Doppler-delay domain or the shadow fading spatial auto-correlation function (SF ACF) methodology. Then, the QSRs have been used as sampling distance in an in-house developed three-dimensional ray-launching (3D-RL) algorithm as an acceleration approach. The time variant channel features have been extracted and compared with the full resolution approach, obtaining consistent results when considering the QSR sampling distances, while decreasing by 83.30% the simulation computational time for the Doppler-delay approach, and 92.86% for the SF ACF method.
  • PublicationOpen Access
    Electromagnetic characterization of uhf-rfid fixed reader in healthcare centers related to the personal and labor health
    (IEEE, 2022) Ramos, Victoria; Suárez, Óscar Javier; Febles Santana, Víctor M.; Suárez Rodríguez, David Samuel; Aguirre Gallego, Erik; Miguel Bilbao, Silvia de; Marina, Pablo; Rabassa López-Calleja, Luis Enrique; Celaya Echarri, Mikel; Falcone Lanas, Francisco; Hernández Armas, Jose Ángel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Hospitals and healthcare centers are experiencing a remarkable implementation of new systems based on wireless communications technologies. Many of these systems provide location services and identification of materials, instrumentation and even patients, which promotes the increase of the quality and the efficiency of healthcare. A tracking system based on short-range radio frequency, UHF-RFID is evaluated. This system helps with location of orthopedic prosthesis according to the criteria and requirements of a specific hospital environment. It is characterized the influence of UHF-RFID system in the electromagnetic environment by measuring the parameters and characteristics of the emission levels. The results of the assessment are represented through 2D contour maps and simulations have been performed by means of an in-house 3D-RL algorithm. The proposed graph aims to provide a methodology of studying the electromagnetic environments and the evaluation of the safety conditions of workers, patients, and people in general. E field exposure levels due to the RFID localization system were analyzed in order to verify regulations concerning the safety of patients and the general public in the labor and healthcare fields. Localized electromagnetic field exposure at levels which may cause electromagnetic hazards in the specific healthcare environment have been found and potentially excessive exposure to EMF emitted by UHF RFID devices may apply to patients or bystanders. In all cases, insufficient electromagnetic immunity of electronic devices (including AIMD and other medical devices) should be considered and the electromagnetic hazards may be limited also by relevant preventive measures, as also shown in this paper, together with the principles of an in-situ evaluation of electromagnetic hazards near the UHF-RFID devices.
  • PublicationOpen Access
    Digital twin modelling of open category UAV radio communications: a case study
    (Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.
  • PublicationOpen Access
    Analysis of inter-train wireless connectivity to enable context aware rail applications
    (Springer, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Train systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware environments is compulsory in order to take full advantage of system integration, with updated information exchange among Intelligent Transportation system deployments. In this work, inter-train wireless system connectivity is analyzed with the aid of deterministic 3D wireless channel approximations, with the aim of obtaining estimations of frequency/power volumetric channel distributions, as well as time domain characteristics, for different frequency bands. The results show the impact of the complex inter-train scenario conditions, which require precise channel modelling in order to perform optimal network design, planning and optimization tasks.
  • PublicationOpen Access
    Tuning selection impact on kriging-aided in-building path loss modeling
    (IEEE, 2022) Diago Mosquera, Melissa; Aragón Zavala, Alejandro; Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    How do you know you select enough tuning dataset from measurements to guarantee model prediction accuracy? Tuning datasets are often selected based on simple random sampling with predefined rates. Usually, these rates are determined as a/b, where a% of the data goes to training and the remaining b% goes to testing. But it is not clear to what extent tuning dataset in order to minimize the estimation path loss errors. It is, thus, required to analyze the performance of channel modeling by selecting—among all measurement samples—appropriate tuning dataset. Using radio measurements and deterministic Ray Launching techniques to collect enough reliable samples, this letter analyzes the impact of tuning dataset selection—expressed in terms of the mean absolute error and cost—on a novel Kriging-aided in-building measurement-based path loss prediction model.
  • PublicationOpen Access
    Deterministic and empirical approach for millimeter-wave complex outdoor smart parking solution deployments
    (MDPI, 2021) Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Alejos, Ana V.; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The characterization of different vegetation/vehicle densities and their corresponding effects on large-scale channel parameters such as path loss can provide important information during the deployment of wireless communications systems under outdoor conditions. In this work, a deterministic analysis based on ray-launching (RL) simulation and empirical measurements for vehicle-to-infrastructure (V2I) communications for outdoor parking environments and smart parking solutions is presented. The study was carried out at a frequency of 28 GHz using directional antennas, with the transmitter raised above ground level under realistic use case conditions. Different radio channel impairments were weighed in, considering the progressive effect of first, the density of an incremental obstructed barrier of trees, and the effect of different parked vehicle densities within the parking lot. On the basis of these scenarios, large-scale parameters and temporal dispersion characteristics were obtained, and the effect of vegetation/vehicle density changes was assessed. The characterization of propagation impairments that different vegetation/vehicle densities can impose onto the wireless radio channel in the millimeter frequency range was performed. Finally, the results obtained in this research can aid communication deployment in outdoor parking conditions.