Aldaz Donamaría, Paula
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aldaz Donamaría
First Name
Paula
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access The regulators of peroxisomal acyl-carnitine shuttle CROT and CRAT promote metastasis in melanoma(Elsevier, 2023) Lasheras Otero, Irene; Feliu, Iker; Maíllo Ruiz de Infante, Alberto; Moreno, Haritz; Redondo Muñoz, Marta; Aldaz Donamaría, Paula; Bocanegra Gondán, Ana Isabel; Olías Arjona, Ana; Lecanda, Fernando; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larráyoz, Ignacio M.; Gómez-Cabrero, David; Wellbrock, Claudia; Vicent, Silvestre; Arozarena Martinicorena, Imanol; Ciencias; Zientziak; Ciencias de la Salud; Osasun ZientziakCirculating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA betaoxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.Publication Open Access Drug-induced reorganisation of lipid metabolism limits the therapeutic efficacy of ponatinib in glioma stem cells(MDPI, 2024-05-29) Aldaz Donamaría, Paula; Olías Arjona, Ana; Lasheras Otero, Irene; Ausín, Karina; Redondo Muñoz, Marta; Wellbrock, Claudia; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Arozarena Martinicorena, Imanol; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaThe standard of care for glioblastoma (GBM) involves surgery followed by adjuvant radio- and chemotherapy, but often within months, patients relapse, and this has been linked to glioma stem cells (GSCs), self-renewing cells with increased therapy resistance. The identification of the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) as key players in gliomagenesis inspired the development of inhibitors targeting these tyrosine kinases (TKIs). However, results from clinical trials testing TKIs have been disappointing, and while the role of GSCs in conventional therapy resistance has been extensively studied, less is known about resistance of GSCs to TKIs. In this study, we have used compartmentalised proteomics to analyse the adaptive response of GSCs to ponatinib, a TKI with activity against PDGFR. The analysis of differentially expressed proteins revealed that GSCs respond to ponatinib by broadly rewiring lipid metabolism, involving fatty acid beta-oxidation, cholesterol synthesis, and sphingolipid degradation. Inhibiting each of these metabolic pathways overcame ponatinib adaptation of GSCs, but interrogation of patient data revealed sphingolipid degradation as the most relevant pathway in GBM. Our data highlight that targeting lipid metabolism, and particularly sphingolipid degradation in combinatorial therapies, could improve the outcome of TKI therapies using ponatinib in GBM.