Liberal Olleta, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Liberal Olleta
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Nanoparticle derived suppressed-scattering bands for radiative cooling(IEEE, 2023) Lezaun Capdevila, Carlos; Pérez Escudero, José Manuel; Torres García, Alicia E.; Caggiano, Antonio; Peralta, Ignacio; Dolado, Jorge S.; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCLight scattering using resonant nanoparticles is crucial for improving sun irradiance reflection in a daytime radiative cooler. Popular nanoparticles in radiative cooling literature are analyzed in terms of scattering performance due to material dispersion. Different scattering properties in the infrared range have been detected while a similar behavior can be achieved in the solar range due to changes in material dispersion. Also, suppressed scattering windows are produced by dispersive nanoparticles, allowing high reflectance while enabling thermal emission selectively. Material dispersion alone produces such scattering windows, thus, given a material, they will always remain in the same region regardless geometry and location of particles. Lastly, calcium silicate hydrate (CSH), the main phase of concrete, is studied as a dispersive host example. These results demonstrate the importance of a co-design between host and nanoparticles dispersion for daytime radiative cooling and that nanoporosities design are a key ingredient that could allow concrete-based daytime radiative coolers.Publication Open Access Radiative cooling properties of portlandite and tobermorite: two cementitious minerals of great relevance in concrete science and technology(American Chemical Society, 2023-06-23) Dolado, Jorge S.; Goracci, Guido; Arrese-Igor, Silvia; Ayuela, Andrés; Torres Betancourt, Angie Tatiana; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Gaitero, Juan J.; Cagnoni, Matteo; Cappelluti, Federica; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCAlthough concrete and cement-based materials are the most engineered materials employed by mankind, their potential for use in daytime radiative cooling applications has yet to be fully explored. Due to its complex structure, which is composed of multiple phases and textural details, fine-tuning of concrete is impossible without first analyzing its most important ingredients. Here, the radiative cooling properties of Portlandite (Ca(OH)2) and Tobermorite (Ca5Si6O16(OH)2·4H2O) are studied due to their crucial relevance in cement and concrete science and technology. Our findings demonstrate that, in contrast to concrete (which is a strong infrared emitter but a poor sun reflector), both Portlandite and Tobermorite exhibit good radiative cooling capabilities. These results provide solid evidence that, with the correct optimization of composition and porosity, concrete can be transformed into a material suitable for daytime radiative cooling.