Nanoparticle derived suppressed-scattering bands for radiative cooling
Date
Authors
Director
Publisher
Impacto
Abstract
Light scattering using resonant nanoparticles is crucial for improving sun irradiance reflection in a daytime radiative cooler. Popular nanoparticles in radiative cooling literature are analyzed in terms of scattering performance due to material dispersion. Different scattering properties in the infrared range have been detected while a similar behavior can be achieved in the solar range due to changes in material dispersion. Also, suppressed scattering windows are produced by dispersive nanoparticles, allowing high reflectance while enabling thermal emission selectively. Material dispersion alone produces such scattering windows, thus, given a material, they will always remain in the same region regardless geometry and location of particles. Lastly, calcium silicate hydrate (CSH), the main phase of concrete, is studied as a dispersive host example. These results demonstrate the importance of a co-design between host and nanoparticles dispersion for daytime radiative cooling and that nanoporosities design are a key ingredient that could allow concrete-based daytime radiative coolers.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.